国产精品天干天干,亚洲毛片在线,日韩gay小鲜肉啪啪18禁,女同Gay自慰喷水

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

KDD2023丨表征學(xué)習(xí)論文合集

2023-07-24 15:00 作者:AMiner科技  | 我要投稿

ACM SIGKDD(國(guó)際數(shù)據(jù)挖掘與知識(shí)發(fā)現(xiàn)大會(huì),簡(jiǎn)稱KDD)會(huì)議始于1989年,是數(shù)據(jù)挖掘領(lǐng)域歷史最悠久、規(guī)模最大的國(guó)際頂級(jí)學(xué)術(shù)會(huì)議,也是首個(gè)引入大數(shù)據(jù)、數(shù)據(jù)科學(xué)、預(yù)測(cè)分析、眾包等概念的會(huì)議,每年吸引了大量數(shù)據(jù)挖掘、機(jī)器學(xué)習(xí)、大數(shù)據(jù)和人工智能等領(lǐng)域的研究學(xué)者、從業(yè)人員參與。

AMiner通過(guò)AI技術(shù),對(duì) KDD2023 收錄的會(huì)議論文進(jìn)行了分類整理,今日分享的是表征學(xué)習(xí)主題論文!(由于篇幅關(guān)系,本篇只展現(xiàn)部分論文,點(diǎn)擊閱讀原文可直達(dá)KDD頂會(huì)頁(yè)面查看所有論文)

1.DCdetector: Dual Attention Contrastive Representation Learning for Time Series Anomaly Detection

鏈接:aminer.cn/pub/6492753bd

2.GENERALIZED MATRIX LOCAL LOW RANK REPRESENTATION BY RANDOM PROJECTION AND SUBMATRIX PROPAGATION

鏈接:aminer.cn/pub/6433f6bc9

3.Joint Pre-training and Local Re-training: Transferable Representation Learning on Multi-source Knowledge Graphs

鏈接:aminer.cn/pub/647eaf51d

4.Task Relation-aware Continual User Representation Learning

鏈接:aminer.cn/pub/647eaf35d

5.Dense Representation Learning and Retrieval for Tabular Data Prediction

鏈接:aminer.cn/pub/64af99fd3

6.Efficient and Effective Edge-wise Graph Representation Learning

鏈接:aminer.cn/pub/64af99fe3

7.CARL-G: Clustering-Accelerated Representation Learning on Graphs

鏈接:aminer.cn/pub/64af99fe3

8.LightPath: Lightweight and Scalable Path Representation Learning

鏈接:aminer.cn/pub/64af9a0b3

9.Urban Region Representation Learning with OpenStreetMap Building Footprints

鏈接:aminer.cn/pub/64af9a0b3

10.Representation Learning on Hyper-Relational and Numeric Knowledge Graphs with Transformers

鏈接:aminer.cn/pub/647572e0d

11.Expert Knowledge-Aware Image Difference Graph Representation Learning for Difference-Aware Medical Visual Question Answering

鏈接:aminer.cn/pub/64af9a023

12.DyTed: Disentangled Representation Learning for Discrete-time Dynamic Graph

鏈接:aminer.cn/pub/64af9a093

13.Heterformer: Transformer-based Deep Node Representation Learning on Heterogeneous Text-Rich Networks

鏈接:aminer.cn/pub/64af9a093

如何使用ChatPaper讀文獻(xiàn)?

為了讓更多科研人更高效的獲取文獻(xiàn)知識(shí),AMiner基于GLM-130B大模型能力,開(kāi)發(fā)了Chatpaper,幫助科研人快速提高檢索、閱讀論文效率,獲取最新領(lǐng)域研究動(dòng)態(tài),讓科研工作更加游刃有余。

ChatPaper是一款集檢索、閱讀、知識(shí)問(wèn)答于一體的對(duì)話式私有知識(shí)庫(kù),AMiner希望通過(guò)技術(shù)的力量,讓大家更加高效地獲取知識(shí)。

ChatPaper:aminer.cn/chat/g

KDD頂會(huì):https://www.aminer.cn/conf/5ea1b22bedb6e7d53c00c41b/KDD2023

KDD2023丨表征學(xué)習(xí)論文合集的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
山东| 灵武市| 泸溪县| 张北县| 庆阳市| 莒南县| 锡林浩特市| 镇原县| 崇左市| 定结县| 亳州市| 乐都县| 寿阳县| 平顶山市| 武山县| 大连市| 仙游县| 祁门县| 宜黄县| 盐津县| 辽宁省| 长丰县| 恩平市| 丹江口市| 万宁市| 恩施市| 瑞金市| 嘉祥县| 许昌市| 吉水县| 长丰县| 太保市| 子洲县| 始兴县| 滨海县| 康保县| 广昌县| 察雅县| 正阳县| 镇远县| 奉节县|