種子表型組學(xué):多光譜種子表型成像系統(tǒng)研究大豆種子葉綠素?zé)晒獾亩喙庾V圖像定量及其與
Videometer Lab4多光譜種子表型成像系統(tǒng)是丹麥理工大學(xué)與丹麥Videometer公司開發(fā),是用于種子研究先進的多光譜表型成像設(shè)備,典型客戶為ISTA國際種子檢驗協(xié)會、ESTA歐洲種子檢驗協(xié)會、John Innes Centre、LGC化學(xué)家集團、奧胡斯大學(xué)等等,利用該系統(tǒng)發(fā)表的文章已經(jīng)超過300篇。
Videometer種子表型表型成像系統(tǒng)可測量種子如尺寸、顏色、形狀等,間接測定種子參數(shù)如種子純度、發(fā)芽百分比、發(fā)芽率、種子健康度、種子成熟度、中壽命等。種子活力綜合種子活力是種子發(fā)芽和出苗率、幼苗生長的潛勢、植株抗逆能力和生產(chǎn)潛力的總和(發(fā)芽和出苗期間的活性水平與行為),是種子品質(zhì)的重要指標(biāo),具體包括吸漲后旺盛的代謝強度、出苗能力、抗逆性、發(fā)芽速度及同步性、幼苗發(fā)育與產(chǎn)量潛力。種子活力是植物的重要表型特征,傳統(tǒng)檢測方法包括低溫測試、高溫加速衰老測試、幼苗生長測定等。
該系統(tǒng)也可以對細菌、蟲卵、真菌等進行高通量成像測量,進行病理學(xué)、毒理學(xué)或其它研究。對于擬南芥等冠層平展的植物,可以進行自動的葉片計數(shù)等。

索引項:
葉綠素保留;甘氨酸(L.)Merrill;綠色種子;種子活力;光譜學(xué)


Figure 3 Soybean seeds with increasing levels of retained chlorophyll, obtained from RGB (Red-Green-Blue) images of internal morphology with the same seeds observed in radiography and chlorophyll fluorescence signals detected by multispectral images at 660 nm (Chl 660 nm) and 730 nm (Chl 730 nm), respectively. In the multispectral images of the soybean seeds, transformed into color map based on gray levels, the hues of the colors dark blue (660 nm, of VideometerLab) and black (730 nm, of SeedReporter) represent the seeds with “yellow” seed coat and embryo, whose chlorophyll was degraded and, for that reason, have low chlorophyll fluorescence signals; the hues with a tendency toward intense red indicate the “greenish” seeds, whose chlorophyll is retained in the seed coat and embryo and, therefore, express greater signals of chlorophyll fluorescence.?a;?e: normal soybean seedling resulting from yellow seed;?b;?f: dead seed, with mechanical damage, covered by fungal mycelium and weak signals of chlorophyll fluorescence;?c;?g: abnormal soybean seedling originating from seed with partial chlorophyll retention;?d;?h: dead seed resulting from green coloring, which indicates a high level of retained chlorophyll.?
Quantification of chlorophyll fluorescence in soybean seeds by multispectral images and their relationship with physiological potential
Abstract
The multispectral image analysis technique to detect chlorophyll fluorescence (CF) in soybean seeds was studied to assess the relationship between CF signals and seed physiological potential. Eight treatments, corresponding to 0%, 2%, 4%, 6%, 8%, 10%, 12%, and 14% green seeds, were used on two cultivars, BMX Desafio RR 8473 RSF and 96R10 IPRO, which passed through different seed quality tests. Initially, the CF of the seeds was determined using 660 nm and 730 nm spectra, and then the germination, electrical conductivity, accelerated aging with saturated NaCl solution, tetrazolium, and computerized seedling image analysis (Vigor-S) tests were performed on the same seeds. A completely randomized design was used, as well as replications of each treatment. Analysis of variance (ANOVA) was performed on the data from germination, vigor, and CF tests using the R? software, and the means were grouped by the Scott-Knott test (p ≤ 0.05). Pearson’s linear correlation coefficients (r) were calculated for all combinations among the evaluations with significance of the r values determined by the t-test (p ≤ 0.05), and multivariate analysis of the principal components was performed. Proportional increases in green seeds contribute to an increase in chlorophyll fluorescence signals and have a negative correlation with seed physiological quality; levels above 4% green seeds in the samples result in marked losses in physiological potential. Therefore, the chlorophyll fluorescence detected through multispectral images is inversely related to the physiological potential of soybean seeds.
Index terms:
chlorophyll retention;?Glycine max?(L.) Merrill; green seeds; seed vigor; spectroscopy