国产精品天干天干,亚洲毛片在线,日韩gay小鲜肉啪啪18禁,女同Gay自慰喷水

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

Taylor's series

2021-08-09 20:44 作者:哼M(jìn)M  | 我要投稿

泰勒無窮級(jí)數(shù)與麥克勞倫無窮級(jí)數(shù)的關(guān)系: 泰勒公式存在一個(gè)a點(diǎn),當(dāng)這個(gè)小點(diǎn)等于0的時(shí)候,泰勒無窮級(jí)數(shù)就是麥克勞倫級(jí)數(shù)了.

Taylor series of the function ?f ?at a (or about a or centered at a).This case arises frequently enough that it is given the special name Maclaurin series.

2021.8.8

傅里葉級(jí)數(shù)(fourier's series)

如何理解傅里葉級(jí)數(shù)?

????1.回憶傅里葉的公式f(x)%3Da_%7B0%7D%20%2B%5Csum_%7Bn%3D1%7D%5EF%5Ba_%7Bn%7Dcos(%5Cfrac%7Bn%5Cpi%20%7D%7Bl%7D%20x)%2B%20%20b_%7Bn%7Dsin(%5Cfrac%7Bn%5Cpi%20%7D%7Bl%7D)%20%5D%2C那個(gè)F 表示無窮.

2.那公式里還有a0,an 和 bn啊!a_%7Bo%7D%20%3D%20%5Cfrac%7B1%7D%7B2l%7D%20%5Cint_%7B-l%7D%5E%7Bl%7D%20f(x)dx%2C

????????????????????????????????????????????a_%7Bn%7D%3D%5Cfrac%7B1%7D%7Bl%7D%20%5Cint_%7B-l%7D%5E%7Bl%7D%20f(x)cos(%5Cfrac%7Bn%5Cpi%20%7D%7Bl%7Dx%20)dx%2C

????????????????????????????????????????????b_%7Bn%7D%20%3D%5Cfrac%7B1%7D%7Bl%7D%20%5Cint_%7B-l%7D%5E%7Bl%7D%20f(x)sin(%5Cfrac%7Bn%5Cpi%20%7D%7Bl%7Dx%20)dx

????????????????????????????????????????????4%3Af(-x)%3D%5Cvert%20_%7Bf(z)%2Ceven%7D%5E%7Bf(-x)%2Codd%7D%20

3.聯(lián)系下sin和cos的積分性質(zhì),在對(duì)稱的區(qū)間內(nèi)積分,呵呵就有偶函數(shù)(even)是Double,奇函數(shù)(odd)是0,發(fā)現(xiàn)了一個(gè)問題:f(x)%5Csin%20(x)%20%E5%92%8C%5Ccos%20(x)%20的乘積is odd or even, we should be certainly make sure. I have the conclusion :odd *even = odd, other is even.

4.那么,接下來就用到奇偶測(cè)試了,公式在上面.利用奇偶測(cè)試,確定在傅里葉級(jí)數(shù)中存在sin還是cos,當(dāng)然還有l 就是你選取的范圍,題目里一般叫周期(一般有%5Cpi%20), function expansion is difficult .

2021.8.9

????


Taylor's series的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
洛隆县| 潍坊市| 石渠县| 曲阳县| 克拉玛依市| 龙口市| 内江市| 砚山县| 元氏县| 开远市| 仁寿县| 大同县| 岑巩县| 星子县| 宜川县| 仙游县| 固原市| 都昌县| 城固县| 玛沁县| 台州市| 九龙县| 定襄县| 苍溪县| 扎赉特旗| 全州县| 大宁县| 徐闻县| 葵青区| 新昌县| 饶平县| 宁强县| 乌海市| 汤阴县| 汕头市| 剑川县| 巩留县| 宁夏| 朔州市| 靖江市| 如东县|