国产精品天干天干,亚洲毛片在线,日韩gay小鲜肉啪啪18禁,女同Gay自慰喷水

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

【簡(jiǎn)潔版】運(yùn)用數(shù)學(xué)歸納法證明:每個(gè)大于等于9的奇數(shù)都是3+兩個(gè)奇素?cái)?shù)之和

2022-07-08 17:22 作者:老頑童崔坤  | 我要投稿

運(yùn)用數(shù)學(xué)歸納法證明:每個(gè)大于等于9的奇數(shù)都是3+兩個(gè)奇素?cái)?shù)之和

崔坤

中國(guó)青島即墨,266200,E-mail:cwkzq@126.com

摘要:

數(shù)學(xué)家劉建亞在《哥德巴赫猜想與潘承洞》中說(shuō):“我們可以把這個(gè)問(wèn)題反過(guò)來(lái)思考, 已知奇數(shù)N可以表成三個(gè)素?cái)?shù)之和, 假如又能證明

這三個(gè)素?cái)?shù)中有一個(gè)非常小,譬如說(shuō)第一個(gè)素?cái)?shù)可以總?cè)?, 那么我們也就證明了偶數(shù)的哥德巴赫猜想?!?,

直到2013年才有秘魯數(shù)學(xué)家哈羅德賀歐夫格特徹底證明了三素?cái)?shù)定理。

關(guān)鍵詞:三素?cái)?shù)定理,奇素?cái)?shù),加法交換律結(jié)合律

中圖分類號(hào):O156 文獻(xiàn)標(biāo)識(shí)碼: A

Mathematical induction proves that every odd number greater than or equal to 9 is the sum of 3 + two odd prime numbers

abstract:Mathematician Liu Jianya said in "Goldbach Conjecture and Pan Chengdong": "We can think about this problem in

reverse. Knowing that the odd number N can be expressed as the sum of three prime numbers, if it can be proved that one of

the three prime numbers is very Small, for example, the first prime number can always be 3, then we have proved

Goldbach’s conjecture for even numbers.” It was not until 2013 that Peruvian mathematician Harold Hoofgert completely

proved the three prime number theorem.

keywords:Triple Prime Theorem, Odd Prime Numbers, Commutative Law of Addition, Associative Law

證明:

根據(jù)2013年秘魯數(shù)學(xué)家哈羅德·賀歐夫格特已經(jīng)徹底地證明了的三素?cái)?shù)定理:

每個(gè)大于等于9的奇數(shù)都是三個(gè)奇素?cái)?shù)之和,每個(gè)奇素?cái)?shù)都可以重復(fù)使用。

它用下列公式表示:Q是每個(gè)≥9的奇數(shù),奇素?cái)?shù):q1≥3,q2≥3,q3≥3,

則Q=q1+q2+q3 根據(jù)加法交換律結(jié)合律,不妨設(shè):q1≥q2≥q3≥3,

則Q-3=q1+q2+q3-3 顯見:有且僅有q3=3時(shí),Q-3=q1+q2,

否則,奇數(shù)9,11,13都是三素?cái)?shù)定理的反例。

即每個(gè)大于等于6的偶數(shù)都是兩個(gè)奇素?cái)?shù)之和

推論Q=3+q1+q2,即每個(gè)大于等于9的奇數(shù)都是3+兩個(gè)奇素?cái)?shù)之和。

我們運(yùn)用數(shù)學(xué)歸納法做如下證明:

給出首項(xiàng)為9,公差為2的等差數(shù)列:Qn=7+2n:{9,11,13,15,17,.....}

Q1= 9

Q2= 11

Q3= 13

Q4= 15
.......

Qn=7+2n=3+q1+q2,(其中奇素?cái)?shù)q1≥q2≥3,奇數(shù)Qn≥9,n為正整數(shù))

數(shù)學(xué)歸納法:

第一步:當(dāng)n=1時(shí) ,Q1=9 時(shí) ,Q1=9=3+q1+q2=3+3+3成立

第二步:假設(shè) :n=k時(shí),Qk=3+qk1+qk2,奇素?cái)?shù):qk1≥3,qk2≥3,成立。

第三步:當(dāng)n=k+1時(shí),Q(k+1)=Qk+2=3+qk1+qk2+2=5+qk1+qk2

即:Qk+2=Q(k+1)=5+qk1+qk2

即每個(gè)大于等于11的奇數(shù)都是5+兩個(gè)奇素?cái)?shù)之和,


從而每個(gè)大于等于6的偶數(shù)都是兩個(gè)奇素?cái)?shù)之和。

而這個(gè)結(jié)論與“每個(gè)大于等于9的奇數(shù)都是3+兩個(gè)奇素?cái)?shù)之和”是等價(jià)的

即:Qk+2=3+qk1+qk2+2=5+qk1+qk2=3+qk3+qk4,奇素?cái)?shù):qk3≥3,qk4≥3

故:Qk+2=3+qk3+qk4,奇素?cái)?shù):qk3≥3,qk4≥3

綜上所述,對(duì)于任意正整數(shù)n命題均成立,


即:每個(gè)大于等于9的奇數(shù)都是3+兩個(gè)奇素?cái)?shù)之和

同時(shí),每個(gè)大于等于11的奇數(shù)Q=3+p1+p2=5+p3+p4,(p1,p2,p3,p4均為奇素?cái)?shù))

結(jié)論:每個(gè)大于等于9的奇數(shù)都是3+兩個(gè)奇素?cái)?shù)之和,


Q=3+q1+q2,(奇素?cái)?shù)q1≥q2≥3,奇數(shù)Q≥9)

參考文獻(xiàn):

[1]Major Arcs for Goldbach's Theorem. Arxiv [Reference date 2013-12-18]

[2] Minor arcs for Goldbach's problem.Arxiv [Reference date 2013-12-18]

【簡(jiǎn)潔版】運(yùn)用數(shù)學(xué)歸納法證明:每個(gè)大于等于9的奇數(shù)都是3+兩個(gè)奇素?cái)?shù)之和的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
手游| 鸡东县| 河曲县| 开阳县| 永登县| 河间市| 张家川| 高青县| 鹿邑县| 潮州市| 岑溪市| 雅安市| 井陉县| 枣强县| 梓潼县| 建始县| 沾化县| 栾川县| 将乐县| 兰溪市| 灵丘县| 周口市| 永登县| 长海县| 台湾省| 临武县| 余姚市| 辽中县| 兰州市| 万荣县| 扶风县| 万载县| 望都县| 彭阳县| 当阳市| 稷山县| 温州市| 姚安县| 虎林市| 哈尔滨市| 麻江县|