国产精品天干天干,亚洲毛片在线,日韩gay小鲜肉啪啪18禁,女同Gay自慰喷水

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊

[Calculus] Logistic Growth

2021-11-12 11:04 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (鄭濤)

【Problem】

The logistic growth model is a population model that incorporates Malthusian-like growth in the early stage and in-species competition for resources at the later stage. This model includes a growth rate r and carrying capacity K. The differential equation of this growth model is

%5Cfrac%7BdN%7D%7Bdt%7D%20%3D%20rN%5Cleft(1%20-%20%5Cfrac%7BN%7D%7BK%7D%20%5Cright)%20

with the initial condition N(0)%20%3D%20N_0%20.

Part 1: What are the steady-state solutions?
Part 2: Solve the differential equation with the aforementioned initial condition.

【Solution】

Part 1

Steady-state solutions occur when %5Cfrac%7BdN%7D%7Bdt%7D%20%3D%200 for all time t. For the logistic growth model,

0%20%3D%20rN%5Cleft(1%20-%20%5Cfrac%7BN%7D%7BK%7D%20%5Cright)

Solving for N shows that the steady-state solutions occur at N%20%3D0 and N%20%3D%20K%20.

Part 2

Rewrite the differential equation %5Cfrac%7BdN%7D%7Bdt%7D%20%3D%20rN%5Cleft(1%20-%20%5Cfrac%7BN%7D%7BK%7D%20%5Cright) as %5Cfrac%7BdN%7D%7Bdt%7D%20%3D%20rN%5Cleft(%5Cfrac%7BK%20-%20N%7D%7BK%7D%20%5Cright)%20.

Integrate both sides

%5Cint%20%5Cfrac%7BK%7D%7BN(K%20-%20N)%7D%20dN%20%3D%20%5Cint%20r%20dt

by partial fractions using the fact

%5Cfrac%7BK%7D%7BN(K%20-%20N)%7D%20%3D%20%5Cfrac%7B1%7D%7BN%7D%20%2B%20%5Cfrac%7B1%7D%7BK-N%7D

Consequently,

%5Cint%20%5Cfrac%7B1%7D%7BN%7D%20%2B%20%5Cfrac%7B1%7D%7BK-N%7D%20dN%20%3D%20%5Cint%20r%20dt%20

%5Cint%20%5Cleft(-%5Cfrac%7B1%7D%7BN%7D%20-%20%5Cfrac%7B1%7D%7BK-N%7D%20%5Cright)%20dN%20%3D%20-%5Cint%20r%20dt%20

-%5Cln%7CN%7C%20%2B%20%5Cln%7CK-N%7C%20%3D%20-rt%20%2B%20C

%5Cln%5Cleft%7C%5Cfrac%7BK-N%7D%7BN%7D%5Cright%7C%20%3D%20-rt%20%2B%20C%20

%5Cln%5Cleft%7C%5Cfrac%7BK-N%7D%7BN%7D%5Cright%7C%20%3D%20-rt%20%2B%20C

%20%5Cfrac%7BK-N%7D%7BN%7D%20%3D%20%7Be%7D%5E%7B-rt%20%2B%20C%7D%20

%5Cfrac%7BK-N%7D%7BN%7D%20%3D%20%7Be%7D%5E%7B-rt%7D%7Be%7D%5E%7BC%7D%20

Let A%20%3D%20%7Be%7D%5E%7BC%7D, then

%5Cfrac%7BK%7D%7BN%7D%20-%201%20%3D%20A%7Be%7D%5E%7B-rt%7D

%5Cfrac%7BK%7D%7BN%7D%20%3D%201%20%2B%20A%7Be%7D%5E%7B-rt%7D%20%20

%20N%20%3D%20%5Cfrac%7BK%7D%7B1%20%2B%20A%7Be%7D%5E%7B-rt%7D%7D%20%20


Solve the initial-value problem:

N(0)%20%3D%20%5Cfrac%7BK%7D%7B1%20%2B%20A%7Be%7D%5E%7B-r(0)%7D%7D%20%20

N_0%20%3D%20%5Cfrac%7BK%7D%7B1%20%2B%20A%7D

%20A%20%3D%20%5Cfrac%7BK%7D%7BN_0%7D%20-1

Consequently, the solution of the logistic growth model is

N(t)%20%3D%20%5Cfrac%7BK%7D%7B1%20%2B%20%5Cleft(%5Cfrac%7BK%7D%7BN_0%7D%20-%201%20%5Cright)%7Be%7D%5E%7B-rt%7D%7D


[Calculus] Logistic Growth的評論 (共 條)

分享到微博請遵守國家法律
大庆市| 类乌齐县| 清镇市| 霍林郭勒市| 平阳县| 图们市| 集贤县| 马公市| 防城港市| 栾川县| 南汇区| 卢龙县| 宜君县| 桃江县| 闵行区| 志丹县| 高阳县| 会东县| 崇明县| 肥城市| 陵水| 璧山县| 瑞安市| 宕昌县| 滕州市| 洱源县| 苗栗县| 婺源县| 资源县| 体育| 兰坪| 贵溪市| 宜宾市| 九龙县| 肃南| 全椒县| 清远市| 玉门市| 鄂托克前旗| 盐城市| 博兴县|