国产精品天干天干,亚洲毛片在线,日韩gay小鲜肉啪啪18禁,女同Gay自慰喷水

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

【機(jī)器人基礎(chǔ)】Introduction to Robotics@UCB

2022-04-26 14:15 作者:Kaiser小弟  | 我要投稿

在看的小伙伴不要被前面幾個(gè)視頻勸退,P4以后的聲音和視頻都很好,而且教授改用了手推定理的方式,講的很好。

Chapter2: rigid body motion

2.2 rotational motions in R3

property of a rotation matrix: orthnornal

rotation matrxi in invitable since the rank is 3 (full rank)

Since orthormal, R-1=RT

(detR)^2=detR*detRT => 1 => detR = +-1

SO(3): othonormal matrix with deg 3 -> a group

group: g1*g2 in G (closure under multiplication)

exists a identity element

all elements have an inverse

Examples of group

R3->addition operation: is a group

0 vector: identity

inverse: negative

(0,1) mod 2 addition

identity: 0

R, multiplication

inverse: 0 does not have -> not group

Property: SO(3) is a group with matrix multiplication

R1*R2 is in SO(3)

identity: I

inverse: RT

Configuration and rigid transformation:


property 2: Rab preserces distances and cross product

R(vXw)=RvXRw

Euler's formula

euler formular for SO(3)

every rotation is a exponential of something

skew symmetric matrices: odd dimention...

9 numbers: only 3 indenpendent parameters


figure what are the 3 parameters

omega_hat is so(3),

hat: R3->so(3), i.e., omega-> omage_hat

exp: so(3)->SO(3), omega_hat*theta->exp(omega_hat*theta)

exponential of a skew symmetric matrix is always a rotational matrix

Rodrigues' formula

product of two skew sym matrix, is sym



【機(jī)器人基礎(chǔ)】Introduction to Robotics@UCB的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
景德镇市| 喀喇| 惠水县| 长沙市| 沾化县| 庆城县| 蓝田县| 黎平县| 清远市| 永新县| 太原市| 富平县| 贺州市| 玉树县| 通城县| 龙江县| 城固县| 固阳县| 六枝特区| 桓台县| 鞍山市| 千阳县| 北京市| 绥宁县| 柘荣县| 长武县| 乌鲁木齐县| 宿松县| 神木县| 巩留县| 新民市| 子洲县| 宁乡县| 江陵县| 嵩明县| 九龙县| 漾濞| 张家川| 遂昌县| 五峰| 枝江市|