国产精品天干天干,亚洲毛片在线,日韩gay小鲜肉啪啪18禁,女同Gay自慰喷水

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

[Number Theory] Objects of Unknown Number

2021-09-04 19:45 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (鄭濤)

【Problem】

The following problem is from the Sunzi Suanjing (孫子算經(jīng)), a text written by an obscure mathematician with the surname Sun (name unknown) sometime around the 3rd to 5th centuries AD.

Suppose we have an unknown number of objects. When counted in threes,?2?are left over, when counted in fives,?3?are left over, and when counted in sevens,?2?are left over. How many objects are there?

[Assume the lowest positive integer solution]


【Solution】

This problem is a system of indeterminate equations with infinitely many solutions. According to the problem, we get


%5Cbegin%7Balign%7D%0A%20N%20%26%5Cequiv%202%20%5Cpmod%7B3%7D%20%5C%5C%0A%20N%20%26%5Cequiv%203%20%5Cpmod%7B5%7D%20%5C%5C%0A%20N%20%26%5Cequiv%202%20%5Cpmod%7B7%7D%0A%5Cend%7Balign%7D

Calculate the product of the moduli

M%20%3D%203%20%5Ctimes%205%20%5Ctimes%207%20%3D%20105

The solution of the Chinese remainder theorem prescribes that

N%20%3D%20%5Cleft%5Br_1%20M_1%20s_1%20%2B%20r_2%20M_2%20s_2%20%2B%20r_3%20M_3%20s_3%20%5Cright%5D%20%5Cpmod%20M

For this problem

M_1%20%3D%20%5Cfrac%7B105%7D%7B3%7D%20%3D%2035%2C%20%5Cquad%20M_2%20%3D%20%5Cfrac%7B105%7D%7B5%7D%20%3D%2021%2C%20%5Cquad%20M_3%20%3D%20%5Cfrac%7B105%7D%7B7%7D%20%3D%2015


N%20%3D%20%5Cleft%5B2(35)s_1%20%2B%203(21)s_2%20%2B%202(15)s_3%20%5Cright%5D%20%5Cpmod%7B105%7D

where

%5Cbegin%7Balign%7D%0A%2035s_1%20%26%5Cequiv%201%20%5Cpmod%7B3%7D%20%5C%5C%0A%2021s_2%20%26%5Cequiv%201%20%5Cpmod%7B5%7D%20%5C%5C%0A%2015s_3%20%26%5Cequiv%201%20%5Cpmod%7B7%7D%0A%5Cend%7Balign%7D


and?s_1%2C%20s_2%2C%20s_3 represent the modular inverses of each respective remainder.? The modular inverses can be solved systematically using Qin Jiushao's (大衍求一術(shù)) ; however, the numbers involved in this problem are small enough to be obtained by guessing and checking.


%5Cbegin%7Balign%7D%0A%2035(2)%20%26%5Cequiv%201%20%5Cpmod%7B3%7D%20%5C%5C%0A%2021(1)%20%26%5Cequiv%201%20%5Cpmod%7B5%7D%20%5C%5C%0A%2015(1)%20%26%5Cequiv%201%20%5Cpmod%7B7%7D%0A%5Cend%7Balign%7D

Final Calculation

N%20%3D%20%5Cleft%5B2(35)(2)%20%2B%203(21)(1)%20%2B%202(15)(1)%20%5Cright%5D%20%5Cpmod%7B105%7D

N%20%5Cequiv%20%5Cleft%5B140%20%2B%2063%20%2B%2030%20%5Cright%5D%20%5Cpmod%7B105%7D

N%20%3D%20233%20%5Cpmod%7B105%7D

Here, 233 is a solution, but this is not the lowest positive integer solution. The lowest positive integer solution is


233%20-%202(105)%20%3D%2023

So there are 23 objects.


[Number Theory] Objects of Unknown Number的評論 (共 條)

分享到微博請遵守國家法律
隆德县| 新津县| 彰化市| 达拉特旗| 冷水江市| 察雅县| 府谷县| 泾阳县| 定西市| 南丹县| 虹口区| 鄢陵县| 新余市| 临安市| 石首市| 惠来县| 舞阳县| 思南县| 万年县| 莎车县| 夏津县| 大港区| 黎城县| 灵寿县| 新营市| 陇西县| 祥云县| 夏河县| 西丰县| 鹰潭市| 锦屏县| 灵武市| 福鼎市| 库车县| 普定县| 新竹县| 台安县| 桦南县| 泗阳县| 鄯善县| 达州市|