国产精品天干天干,亚洲毛片在线,日韩gay小鲜肉啪啪18禁,女同Gay自慰喷水

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

f(f(x))=x^2-x+1的連續(xù)函數(shù)解

2023-01-12 22:50 作者:52857272542_bili  | 我要投稿

假定f(x)定義域?yàn)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=%5Cmathbb%20R" alt="%5Cmathbb%20R">且連續(xù),g(x)%3Df(f(x))%3Dx%5E2-x%2B1,先簡(jiǎn)單討論一下f(x)的性質(zhì).

  1. f(1)%3D1.f(x)%5E2-f(x)%2B1%3Df(x%5E2-x%2B1),f(1)%3D1

  2. fx%5Cgeq%20%5Cfrac%7B1%7D%7B2%7D%20時(shí)嚴(yán)格單調(diào)遞增.若f(a)%3Df(b)(a%20%5Cne%20b),則g(a)%3Dg(b),a%2Bb%3D1,x%5Cgeq%20%5Cfrac%7B1%7D%7B2%7D%20時(shí),f是單射,f嚴(yán)格單調(diào),若f遞減,%5Cexists%20%5Cfrac%7B1%7D%7B2%7D%20%3Ca_0%3C1,f(a_0)%3E1,令a_%7Bn%2B1%7D%3Dg(a_n),則%5Clim_%7Bn%5Cto%20%2B%5Cinfty%7D%20a_n%3D%201,f(1)%3D%5Clim_%7Bn%5Cto%20%2B%5Cinfty%7D%20f(a_n)%3D%20%2B%5Cinfty,矛盾,f遞增

  3. %5Cfrac%7B1%7D%7B2%7D%20%3Cf(%5Cfrac%7B1%7D%7B2%7D%20)%3C%5Cfrac%7B3%7D%7B4%7D%20.若f(%5Cfrac%7B1%7D%7B2%7D%20)%5Cgeq%20%5Cfrac%7B3%7D%7B4%7D%20f(%5Cfrac%7B1%7D%7B2%7D%20)%5Cgeq%20g(%5Cfrac%7B1%7D%7B2%7D%20)%5Cgeq%20f(%5Cfrac%7B3%7D%7B4%7D%20)%3Ef(%5Cfrac%7B1%7D%7B2%7D%20),矛盾,若f(%5Cfrac%7B1%7D%7B2%7D%20)%5Cleq%20%20%5Cfrac%7B1%7D%7B2%7D%20,%5Cexists%20x_0%20%5Cgeq%20%5Cfrac%7B1%7D%7B2%7D%20,f(x_0)%3D%5Cfrac%7B1%7D%7B2%7D%20,%5Cfrac%7B3%7D%7B4%7D%5Cleq%20%20g(x_0)%3Df(%5Cfrac%7B1%7D%7B2%7D%20)%20%5Cleq%20%5Cfrac%7B1%7D%7B2%7D%20,矛盾

  4. f關(guān)于x%3D%5Cfrac%7B1%7D%7B2%7D%20對(duì)稱.由1,f(1-x)%3Df(x)1-f(x),若%5Cexists%20a%3E%5Cfrac%7B1%7D%7B2%7D%20,f(1-a)%3D1-f(a),則f(1-a)%3C%5Cfrac%7B1%7D%7B2%7D%3Cf(a)%20,由介值定理,%5Cexists%20x_0,f(x_0)%3D%5Cfrac%7B1%7D%7B2%7D%20,f(%5Cfrac%7B1%7D%7B2%7D)%3Dg(x_0)%20%5Cgeq%20%5Cfrac%7B3%7D%7B4%7D,但這是不成立的,故f(1-x)%3Df(x)(%5Cforall%20x%20%5Cin%20%5Cmathbb%20R)

  5. x%20%5Cgeq%20%5Cfrac%7B1%7D%7B2%7D%20%5Cland%20%20x%5Cne%201時(shí),x%3Cf(x)%3Cg(x).若f(x)%3Cx,x%3Cg(x)%3Cf(x)%3Cx,矛盾,故f(x)%3Ex,g(x)%3Ef(x)

由以上性質(zhì),只需討論fx%20%5Cgeq%20%5Cfrac%7B1%7D%7B2%7D%20時(shí)的取值,將其分為%5B%5Cfrac%7B1%7D%7B2%7D%20%2C1)(1%2C%2B%5Cinfty)兩部分分別構(gòu)造

  1. %5B%5Cfrac%7B1%7D%7B2%7D%20%2C1).令a_0%3D%5Cfrac%7B1%7D%7B2%7D%20,a_%7Bn%2B1%7D%3Dg(a_n),n%5Cin%20%5Cmathbb%20N_%7B%5Cgeq%200%7D,任取b_0%20%5Cin%20(a_0%2Ca_1)b_%7Bn%2B1%7D%3Dg(b_n),構(gòu)造%5Chat%20f%3A%5Ba_0%2Cb_0%5D%5Crightarrow%20%5Bb_0%2Ca_1%5D,令%5Chat%20f嚴(yán)格遞增且滿射,令f%3Dg_n%20%5Chat%20f%20g_n%5E%7B-1%7D%2Cx%5Cin%5Ba_n%2Cb_n%5D;f%3Dg_%7Bn%2B1%7D%20%5Chat%20f%5E%7B-1%7D%20g_n%5E%7B-1%7D%2Cx%5Cin%5Bb_n%2Ca_%7Bn%2B1%7D%5D.顯然f%5B%5Cfrac%7B1%7D%7B2%7D%20%2C1%5D上連續(xù),f%5Ccirc%20f%3Dg_%7Bn%2B1%7D%5Chat%20f%5E%7B-1%7Dg_n%5E%7B-1%7D%20g_n%20%5Chat%20f%20g_n%5E%7B-1%7D%3Dgx%5Cin%5Ba_n%2Cb_n%5Df%5Ccirc%20f%3Dg_%7Bn%2B1%7D%5Chat%20f%20g_%7Bn%2B1%7D%5E%7B-1%7Dg_%7Bn%2B1%7D%20%5Chat%20f%5E%7B-1%7D%20g_n%5E%7B-1%7D%3Dg,x%5Cin%5Bb_n%2Ca_%7Bn%2B1%7D%5D

  2. (1%2C%2B%5Cinfty).令a_0%3D2(隨便取的),a_%7Bn%2B1%7D%3Dg(a_n),n%5Cin%20%5Cmathbb%20Z,任取b_0%20%5Cin%20(a_0%2Ca_1),b_%7Bn%2B1%7D%3Dg(b_n),構(gòu)造%5Chat%20f%3A%5Ba_0%2Cb_0%5D%5Crightarrow%20%5Bb_0%2Ca_1%5D,令%5Chat%20f嚴(yán)格遞增且滿射,令f%3Dg_n%20%5Chat%20f%20g_n%5E%7B-1%7D%2Cx%5Cin%5Ba_n%2Cb_n%5D;f%3Dg_%7Bn%2B1%7D%20%5Chat%20f%5E%7B-1%7D%20g_n%5E%7B-1%7D%2Cx%5Cin%5Bb_n%2Ca_%7Bn%2B1%7D%5D.顯然f%5B%5Cfrac%7B1%7D%7B2%7D%20%2C1%5D上連續(xù),f%5Ccirc%20f%3Dg_%7Bn%2B1%7D%5Chat%20f%5E%7B-1%7Dg_n%5E%7B-1%7D%20g_n%20%5Chat%20f%20g_n%5E%7B-1%7D%3Dg,x%5Cin%5Ba_n%2Cb_n%5Df%5Ccirc%20f%3Dg_%7Bn%2B1%7D%5Chat%20f%20g_%7Bn%2B1%7D%5E%7B-1%7Dg_%7Bn%2B1%7D%20%5Chat%20f%5E%7B-1%7D%20g_n%5E%7B-1%7D%3Dg,x%5Cin%5Bb_n%2Ca_%7Bn%2B1%7D%5D

綜上,構(gòu)造出的函數(shù)f%5Cmathbb%20R上f(f(x))=x^2-x+1的連續(xù)函數(shù)解,并且對(duì)于任意連續(xù)函數(shù)解f,在以上構(gòu)造中令%5Chat%20ff%5Ba_0%2Cb_0%5D上的限制,構(gòu)造出的函數(shù)就是f本身,所以上述構(gòu)造方法給出了f(f(x))=x^2-x+1所有連續(xù)函數(shù)解的構(gòu)造.

f(f(x))=x^2-x+1的連續(xù)函數(shù)解的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
盐津县| 大城县| 宝鸡市| 武陟县| 积石山| 双鸭山市| 四子王旗| 湖南省| 玉溪市| 昌图县| 当涂县| 报价| 深泽县| 镇原县| 鄂托克旗| 玉环县| 靖江市| 阳山县| 大新县| 漳州市| 南平市| 海原县| 民丰县| 绥阳县| 乐都县| 基隆市| 滕州市| 兴和县| 仁寿县| 日照市| 湟源县| 新源县| 宿州市| 大理市| 仪征市| 南和县| 祁东县| 治多县| 渝中区| 措美县| 云梦县|