国产精品天干天干,亚洲毛片在线,日韩gay小鲜肉啪啪18禁,女同Gay自慰喷水

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

計算方法實驗三

2023-03-27 20:40 作者:啊啊啊不不不b  | 我要投稿



一、實驗名稱:

實驗三、插值逼近

二、實驗目的:

1. 掌握Lagrange插值、Newton插值的概念;

2. 編寫程序?qū)崿F(xiàn);

3. 觀察Runge現(xiàn)象。

三、實驗內(nèi)容及要求:


1.%E5%B7%B2%E7%9F%A5%E5%87%BD%E6%95%B0f(x)%3D1%2F(1%2Bx%5E2%20)%2Cx%E2%88%88%5B-5%2C5%5D%EF%BC%8C%E5%AF%B9%E5%AE%9A%E4%B9%89%E5%9F%9F%5B-5%2C5%5D%E8%BF%9B%E8%A1%8Cn%E7%AD%89%E5%88%86%EF%BC%9B

(a)取n%3D5%2C10%2C20%2C40,以等分節(jié)點為插值節(jié)點,構(gòu)造Lagrange插值公式,用程序計算各等分區(qū)間中點處的值,列表顯示(給出插值多項式及函數(shù)在等分區(qū)間中點處值),并分別作出和插值函數(shù)的圖形(將5個圖形畫在同一張圖里,并用不同顏色表示,四個插值多項式及一f(x)個圖形);

(b)取,以等分節(jié)點為插值節(jié)點,構(gòu)造牛頓插值函數(shù),用程序計算各等分區(qū)間中點處的值,列表顯示(給出插值多項式及函數(shù)在等分區(qū)間中點處值),并分別作出和插值函數(shù)的圖形(將5個圖形畫在同一張圖里,并用不同顏色表示,四個插值多項式及一個圖形);

(c)取,在剖分的基礎上簡歷分片線性Lagrange插值函數(shù),用程序計算各等分區(qū)間中點處的值,列表顯示(給出插值多項式及函數(shù)在等分區(qū)間中點處值),并分別作出和插值函數(shù)的圖形(將5個圖形畫在同一張圖里,并用不同顏色表示,四個插值多項式及一個圖形);

2.實現(xiàn)課本39頁例2.12,取,分別作出和插值函數(shù)的圖形(將5個圖形畫在同一張圖里,并用不同顏色表示,四個插值多項式及一個圖形);觀察Runge現(xiàn)象。

三、實驗步驟(或記錄)

1、(a)

插值多項式及函數(shù)在等分區(qū)間中點處值????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? ???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? ????????????????????????

Y???? 0.038461538?? 0.042440318?? 0.047058824?? 0.052459016?? 0.058823529?? 0.066390041?? 0.075471698??????? 0.086486486?? 0.1?? 0.116788321?? 0.137931034?? 0.164948454?? 0.2?? 0.246153846?? 0.307692308??????? 0.390243902?? 0.5?? 0.64 0.8?? 0.941176471?? 1????? 0.941176471?? 0.8?? 0.64 0.5?? 0.390243902?? 0.307692308??????? 0.246153846?? 0.2?? 0.164948454?? 0.137931034?? 0.116788321?? 0.1?? 0.086486486?? 0.075471698??????? 0.066390041?? 0.058823529?? 0.052459016?? 0.047058824?? 0.042440318?? 0.038461538

y1??? -0.048076923 0.321153846?? 0.567307692?? 0.321153846?? -0.048076923??????????????????????????????????????????????????????????? ???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? ?????????????????????????????????????????

y2??? 1.57872099???? -0.226196289 0.253755457?? 0.235346591?? 0.84340743???? 0.84340743???? 0.235346591??????? 0.253755457?? -0.226196289 1.57872099????????????????????????????????????????????????????????????????????????????????????????????????????????????????? ??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

y3??? -39.95244903 3.4549578?????? -0.447051961 0.202422616?? 0.080659993?? 0.17976263???? 0.238445934??????? 0.395093054?? 0.636755336?? 0.94249038???? 0.94249038???? 0.636755336?? 0.395093054?? 0.238445934??????? 0.17976263???? 0.080659993?? 0.202422616?? -0.447051961 3.4549578?????? -39.95244903?????????????????????????????????? ?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

y4??? -57409.17974 2287.728499?? -156.169717?? 15.42434982?? -1.939791158 0.39938813???? 0.014910807??????? 0.10858616???? 0.103537161?? 0.128151723?? 0.150063036?? 0.181523667?? 0.221349033?? 0.274733128??????? 0.345913865?? 0.441399666?? 0.566357999?? 0.719110364?? 0.876706771?? 0.984617272?? 0.984617272??????? 0.876706771?? 0.719110364?? 0.566357999?? 0.441399666?? 0.345913865?? 0.274733128?? 0.221349033??????? 0.181523667?? 0.150063036?? 0.128151723?? 0.103537161?? 0.10858616???? 0.014910807?? 0.39938813???? -1.939791158?? 15.42434982?? -156.169717?? 2287.728499?? -57409.17974

%構(gòu)造lagrange插值函數(shù),參考:https://blog.csdn.net/qq_44692057/article/details/108314856
? function y=lagr(X,Y,x)
? n=length(X);
? m=length(x);
? for i=1:m
? ??? z=x(i);
? ??? s=0;
? ??? for k=1:n
? ??????? p=1;
? ???? ???for j=1:n
? ??????????? if j~=k
? ??????????????? p=p*(z-X(j))/(X(k)-X(j));
? ??????????? end
? ??????? end
? ??????? s=p*Y(k)+s;
? ??? end
? ??? y(i)=s;
? end
?
? %輸入已知量(第2次a問)
? clear;
? n=[5 10 20 40];
? for a=1:4
? b=10/n(a);
? i=1:n(a)+1;
? j=-5:b:5;
? x=[i;j];
? for k=1:n(a)+1
? ??? ????X(k)=x(2,k)
? ??????? Y(k)=1/(1+X(k)*X(k));
? ??? end
? for l=1:n(a)
? ??? x0(l)=(x(2,l)+x(2,l+1))/2;
? end
? if a==1
? ??? y1=lagr(X,Y,x0);
? ??? x1=x0;
? elseif a==2
? ?????? ?????y2=lagr(X,Y,x0);
? ?????? ?????x2=x0;
? elseif a==3
? ?? ?????y3=lagr(X,Y,x0);
? ?? ?????x3=x0;
? elseif a==4
? ?? ?????y4=lagr(X,Y,x0);
? ?? ?????x4=x0;
?
? end
?
? end
? %畫圖比較精確值
? figure(1)
? xc=[-5:0.05:5]
? plot(xc,1./(1+xc.*xc),'k')
? hold on
? plot(x1,y1,'r')
? hold on
? plot(x2,y2,'y')
? hold on
? plot(x3,y3,'b')
? hold on
? plot(x4,y4,'g')
? hold off
? figure(2)
? xc=[-5:0.05:5]
? plot(xc,1./(1+xc.*xc),'k')
? hold on
? plot(x1,y1,'r')
? hold on
? plot(x2,y2,'y')
? hold on
? plot(x3,y3,'b')
? hold on
? plot(x4,y4,'g')
? hold off
? axis([-5,5,-1,1])
? 得出圖像

(b)

%構(gòu)造newton插值參考https://zhuanlan.zhihu.com/p/34883522
? function? ? N? = Newton( x,y,t )
? syms?? p ? ;?? %定義符號變量
? N = y(1);
? dd = 0;
? dxs = 1;
? n = length(x);
? for(i = 1:n-1)
? ??? ? for(j = i+1:n)
? ?? ?????dd(j) = (y(j)-y(i))/(x(j)-x(i));
? ??? end
? ??? temp1(i) = dd(i+1);
? ??? dxs = dxs*(p-x(i));
? ??? N = N + temp1(i)*dxs;
? ??? y = dd;
? end
? ? simplify(N);
? %以上為計算部分,下面是輸出規(guī)則;
? if(nargin == 2)
? ??? N = subs(N,'p','x');
? ??? N = collect(N);
? ??? N = vpa(N,4);
? else
? ??? m = length(t);
? ??? for i = ? 1:m
? ? ?????temp(i) = subs(N,'p',t(i));
? ??? end
? ??? N = temp;
? end
?
? %輸入已知量(第2次a問)
? clear;
? n=[5 10 20 40];
? for a=1:4
? b=10/n(a);
? i=1:n(a)+1;
? j=-5:b:5;
? x=[i;j];
? for k=1:n(a)+1
? ??????? X(k)=x(2,k)
? ??????? Y(k)=1/(1+X(k)*X(k));
? ??? end
? for l=1:n(a)
? ??? x0(l)=(x(2,l)+x(2,l+1))/2;
? end
? if a==1
? ??? y1=Newton(X,Y,x0);
? ??? x1=x0;
? elseif a==2
? ?????? ?????y2=Newton(X,Y,x0);
? ?????? ?????x2=x0;
? elseif a==3
? ?? ?????y3=Newton(X,Y,x0);
? ?? ?????x3=x0;
? elseif a==4
? ?? ?????y4=Newton(X,Y,x0);
? ?? ?????x4=x0;
?
? end
?
? end
? %畫圖比較精確值
? figure(1)
? xc=[-5:0.05:5]
? plot(xc,1./(1+xc.*xc),'k')
? hold on
? plot(x1,y1,'r')
? hold on
? plot(x2,y2,'y')
? hold on
? plot(x3,y3,'b')
? hold on
? plot(x4,y4,'g')
? hold off
? figure(2)
? xc=[-5:0.05:5]
? plot(xc,1./(1+xc.*xc),'k')
? hold on
? plot(x1,y1,'r')
? hold on
? plot(x2,y2,'y')
? hold on
? plot(x3,y3,'b')
? hold on
? plot(x4,y4,'g')
? hold off
? axis([-5,5,-1,1])
? 得出圖像

(c)

%構(gòu)造分段線性插值函數(shù)
? function y=fenduan(X,Y,x)
? n=length(X);
? m=length(x);
? for j=1:m
? ??? for i=1:n-1
? ?? ?????if x(j)>X(i)&&x(j)<=X(i+1)
? ??? ????????y(j)=((x(j)-X(i+1))/(X(i)-X(i+1)))*Y(i)+(((x(j)-X(i))/(X(i+1)-X(i)))*Y(i+1));
? ?? ?????end
? ??? end
? end
?
? %第二次c問
? clear;
? n=[5 10 20 40];
? for a=1:4
? b=10/n(a);
? i=1:n(a)+1;
? j=-5:b:5;
? x=[i;j];
? for k=1:n(a)+1
? ??????? X(k)=x(2,k)
? ??????? Y(k)=1/(1+X(k)*X(k));
? ??? end
? for l=1:n(a)
? ??? x0(l)=(x(2,l)+x(2,l+1))/2;
? end
? if a==1
? ??? y1=fenduan(X,Y,x0);
? ??? x1=x0;
? elseif a==2
? ?????? ?????y2=fenduan(X,Y,x0);
? ?????? ?????x2=x0;
? elseif a==3
? ?? ?????y3=fenduan(X,Y,x0);
? ?? ?????x3=x0;
? elseif a==4
? ?? ?????y4=fenduan(X,Y,x0);
? ?? ?????x4=x0;
?
? end
?
? end
? %畫圖比較精確值
? xc=[-5:0.05:5]
? plot(xc,1./(1+xc.*xc),'k')
? hold on
? plot(x1,y1,'r')
? hold on
? plot(x2,y2,'y')
? hold on
? plot(x3,y3,'b')
? hold on
? plot(x4,y4,'g')
? hold off

得出圖像

2、

%d2
? clear;
? n=[4 6 8 10];
? x0=[-1:0.005:1];
? for a=1:4
? b=2/n(a);
? X=-1:b:1;
? for i=1:n(a)+1
? Y(i)=1/(1+25*X(i)*X(i))
? end
? if a==1
? ??? y1=lagr(X,Y,x0);
? elseif a==2
? ??????????? y2=lagr(X,Y,x0);
? elseif a==3
? ??????? y3=lagr(X,Y,x0);
? elseif a==4
? ??????? y4=lagr(X,Y,x0);
? end
? end
? %畫圖比較精確值
? plot(x0,1./(1+25*x0.*x0),'k')
? hold on
? plot(x0,y1,'r')
? hold on
? plot(x0,y2,'y')
? hold on
? plot(x0,y3,'b')
? hold on
? plot(x0,y4,'g')
? hold off

得出圖像


計算方法實驗三的評論 (共 條)

分享到微博請遵守國家法律
克拉玛依市| 五常市| 马边| 宜兰市| 会东县| 佳木斯市| 乐昌市| 宜春市| 师宗县| 桃园市| 福建省| 长武县| 大厂| 汉沽区| 怀仁县| 北宁市| 枣庄市| 广水市| 大石桥市| 确山县| 乌拉特后旗| 六安市| 富阳市| 如东县| 克什克腾旗| 华安县| 济源市| 天气| 哈巴河县| 左贡县| 来凤县| 宜兰县| 图木舒克市| 东辽县| 拜泉县| 托克逊县| 余庆县| 绍兴县| 铁岭市| 抚松县| 乐东|