国产精品天干天干,亚洲毛片在线,日韩gay小鲜肉啪啪18禁,女同Gay自慰喷水

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

【數(shù)學(xué)分析】520問題解答

2023-05-21 23:25 作者:Ice_koucha  | 我要投稿

昨天(5月20號(hào))的動(dòng)態(tài)Ice_koucha的動(dòng)態(tài) - 嗶哩嗶哩 (bilibili.com)

問題:%5Cfrac%7B%5Cint_%7B520%7D%5E%7B1314%7D%20%5Cfrac%7B%5Csqrt%7Bln(2023-x)%7D%20%7D%7B%5Csqrt%7Bln(189%2Bx)%7D%20%2B%5Csqrt%7Bln(2023-x)%7D%7Ddx-3%5Clim_%7Bn%5Cto%E2%88%9E%7D%20%5Cfrac%7B%5Csum_%7Bj%3D1%7D%5En%20%5Csqrt%5Bj%5D%7Bn%7D%20%20%7D%7Bn%7D%20%20%20-%5Clim_%7Bx%5Cto0%7D%20%5Cint_%7B0%7D%5E%7Bx%7D%5Cfrac%7Bsint%7D%7B%5Csqrt%7B4%2Bt%5E2%7D%20%5Cint_%7B0%7D%5E%7Bx%7D(%5Csqrt%7Bt%2B1%7D-1%20)dt%20%7D%20%20%20dt%7D%7B%5Clim_%7Bn%5Cto%E2%88%9E%7D%20%5Cfrac%7B(n%2B114514)(n-1919810)%7D%7B%5Csum_%7Bi%3D1%7D%5En%5Csqrt%7Bi%7D%20%5Ccdot%20%5Csum_%7Bk%3D1%7D%5En%5Cfrac%7B1%7D%7B%5Csqrt%7Bk%7D%20%7D%20%20%20%7D%20%20%7D%20

Part%E2%85%A0

%5Cint_%7B520%7D%5E%7B1314%7D%20%5Cfrac%7B%5Csqrt%7Bln(2023-x)%7D%20%7D%7B%5Csqrt%7Bln(189%2Bx)%7D%20%2B%5Csqrt%7Bln(2023-x)%7D%7Ddx

(引理1)區(qū)間再現(xiàn)公式:

%5Cint_%7Ba%7D%5E%7Bb%7D%20f(x)dx%3D%5Cint_%7Ba%7D%5E%7Bb%7D%20f(a%2Bb-x)dx

證明:令a%2Bb-x%3Dt,則x%3Da%2Bb-t

所以%5Cint_%7Ba%7D%5E%7Bb%7D%20f(a%2Bb-x)dx%3D%5Cint_%7Bb%7D%5E%7Ba%7D%20f(t)d(a%2Bb-t)%3D%5Cint_%7Ba%7D%5E%7Bb%7D%20f(t)dt

因?yàn)槎ǚe分的值與字母無關(guān),證畢。

%5Cint_%7B520%7D%5E%7B1314%7D%20%5Cfrac%7B%5Csqrt%7Bln(2023-x)%7D%20%7D%7B%5Csqrt%7Bln(189%2Bx)%7D%20%2B%5Csqrt%7Bln(2023-x)%7D%7Ddx%3D%5Cint_%7B520%7D%5E%7B1314%7D%20%5Cfrac%7B%5Csqrt%7Bln(188%2Bx)%7D%20%7D%7B%5Csqrt%7Bln(2023-x)%7D%2B%5Csqrt%7Bln(189%2Bx)%7D%20%20%7Ddx%20


%3D%5Cfrac%7B1%7D%7B2%7D%20(%5Cint_%7B520%7D%5E%7B1314%7D%20%5Cfrac%7B%5Csqrt%7Bln(2023-x)%7D%20%7D%7B%5Csqrt%7Bln(189%2Bx)%7D%20%2B%5Csqrt%7Bln(2023-x)%7D%7Ddx%2B%5Cint_%7B520%7D%5E%7B1314%7D%20%5Cfrac%7B%5Csqrt%7Bln(188%2Bx)%7D%20%7D%7B%5Csqrt%7Bln(2023-x)%7D%2B%5Csqrt%7Bln(189%2Bx)%7D%20%20%7Ddx%20)

%3D%5Cfrac%7B1%7D%7B2%7D%20%5Cint_%7B520%7D%5E%7B1314%7D%20dx

%3D397

Part%E2%85%A1

%5Clim_%7Bn%5Cto%E2%88%9E%7D%20%5Cfrac%7B%5Csum_%7Bj%3D1%7D%5En%20%5Csqrt%5Bj%5D%7Bn%7D%20%7D%7Bn%7D%20

%20%20%20%5Coverset%7BStolz%E5%AE%9A%E7%90%86%7D%7B%3D%7D%5Clim_%7Bn%5Cto%E2%88%9E%7D%20%5Cfrac%7B%5Csum_%7Bj%3D1%7D%5En%20%5Csqrt%5Bj%5D%7Bn%7D-%5Csum_%7Bj%3D1%7D%5E%7Bn%2B1%7D%20%5Csqrt%5Bj%5D%7Bn%2B1%7D%7D%7Bn%2B1-n%7D%20

%3D2%2B%5Clim_%7Bn%5Cto%E2%88%9E%7D%20%5Csum_%7Bj%3D2%7D%5En%20(%5Csqrt%5Bj%5D%7Bn%2B1%7D-%5Csqrt%5Bj%5D%7Bn%7D%20)

(引理2)當(dāng)m%3E1時(shí),有下列不等式成立:

%5Cfrac%7B1%7D%7Bm%7D%5Ccdot%20%5Cfrac%7B1%7D%7B(n%2B1)%5E%7B1-%5Cfrac%7B1%7D%7Bm%7D%20%7D%20%7D%20%20%3C%5Csqrt%5Bm%5D%7Bn%2B1%7D%20-%5Csqrt%5Bm%5D%7Bn%7D%20%3C%5Cfrac%7B1%7D%7Bm%7D%20%5Ccdot%20%5Cfrac%7B1%7D%7Bn%5E%7B1-%5Cfrac%7B1%7D%7Bm%7D%20%7D%20%7D%20

證明:令f(t)%3D%5Csqrt%5Bm%5D%7Bt%7D%20(t%5Cgeq%201),在t%3Dx%2B1t%3Dx上使用Lagrange中值定理,有

f(x%2B1)-f(x)%3Df'(%20%5Cxi%20)%3D%5Cfrac%7B1%7D%7Bm%7D%20%5Ccdot%20%5Cfrac%7B1%7D%7B%5Cxi%20%5E%7B1-%5Cfrac%7B1%7D%7Bm%7D%20%7D%20%7D%20(其中%5Cxi%20%5Cin(x%2Cx%2B1))

g(x)%3D%5Cfrac%7B1%7D%7Bx%5E%7B1-%5Cfrac%7B1%7D%7Bm%7D%20%7D%7D%20(x%5Cgeq%201),顯然g(x)嚴(yán)格單調(diào)遞減。

所以有

%5Cfrac%7B1%7D%7Bm%7D%5Ccdot%20%5Cfrac%7B1%7D%7B(x%2B1)%5E%7B1-%5Cfrac%7B1%7D%7Bm%7D%20%7D%20%7D%20%20%3C%5Cfrac%7B1%7D%7Bm%7D%20%5Ccdot%20%5Cfrac%7B1%7D%7B%5Cxi%20%5E%7B1-%5Cfrac%7B1%7D%7Bm%7D%20%7D%20%7D%20%20%3C%5Cfrac%7B1%7D%7Bm%7D%20%5Ccdot%20%5Cfrac%7B1%7D%7Bx%5E%7B1-%5Cfrac%7B1%7D%7Bm%7D%20%7D%20%7D%20

將上述不等式中x換為n,證畢。

0%3C%5Csum_%7Bj%3D2%7D%5En%20(%5Csqrt%5Bj%5D%7Bn%2B1%7D-%5Csqrt%5Bj%5D%7Bn%7D%20)%3C%5Csum_%7Bj%3D2%7D%5En%20%5Cfrac%7B1%7D%7Bj%7D%20%5Ccdot%20%5Cfrac%7B1%7D%7Bn%5E%7B1-%5Cfrac%7B1%7D%7Bj%7D%20%7D%20%7D%20%3C%5Cfrac%7B%5Csum_%7Bj%3D2%7D%5En%20%5Cfrac%7B1%7D%7Bj%7D%20%7D%7B%5Csqrt%7Bn%7D%20%7D%20

%5Clim_%7Bn%5Cto%E2%88%9E%7D%20%5Cfrac%7B%5Csum_%7Bj%3D2%7D%5En%20%5Cfrac%7B1%7D%7Bj%7D%20%7D%7B%5Csqrt%7Bn%7D%20%7D%5Coverset%7BStolz%E5%AE%9A%E7%90%86%7D%7B%3D%7D%0A%5Clim_%7Bn%5Cto%E2%88%9E%7D%5Cfrac%7B%5Csum_%7Bj%3D2%7D%5E%7Bn%2B1%7D%5Cfrac%7B1%7D%7Bj%7D-%5Csum_%7Bj%3D2%7D%5En%20%5Cfrac%7B1%7D%7Bj%7D%20%7D%7B%5Csqrt%7Bn%2B1%7D-%5Csqrt%7Bn%7D%20%7D%20%3D2%5Clim_%7Bn%5Cto%E2%88%9E%7D%20%5Cfrac%7B%5Csqrt%7Bn%7D%20%7D%7Bn%2B1%7D%20%3D0

由夾逼定理知%5Clim_%7Bn%5Cto%E2%88%9E%7D%20%5Csum_%7Bj%3D2%7D%5En%20(%5Csqrt%5Bj%5D%7Bn%2B1%7D-%5Csqrt%5Bj%5D%7Bn%7D%20)%3D0

所以%5Clim_%7Bn%5Cto%E2%88%9E%7D%20%5Cfrac%7B%5Csum_%7Bj%3D1%7D%5En%20%5Csqrt%5Bj%5D%7Bn%7D%20%7D%7Bn%7D%20%3D2

Part%E2%85%A2

%5Clim_%7Bx%5Cto0%7D%20%5Cint_%7B0%7D%5E%7Bx%7D%5Cfrac%7Bsint%7D%7B%5Csqrt%7B4%2Bt%5E2%7D%20%5Cint_%7B0%7D%5E%7Bx%7D(%5Csqrt%7Bt%2B1%7D-1%20)dt%20%7D%20%20dt

%5Coverset%7BL'H%C3%B4pital%7D%7B%3D%7D%5Clim_%7Bx%5Cto0%7D%20%5Cfrac%7Bsinx%7D%7B%5Csqrt%7B4%2Bx%5E2%20%7D(%5Csqrt%7Bx%2B1%7D-1%20)%20%7D%20

%3D%5Cfrac%7B1%7D%7B2%7D%20%5Clim_%7Bx%5Cto0%7D%20%5Cfrac%7Bx%7D%7B%5Csqrt%7Bx%2B1%7D-1%20%7D%20%20

%3D%5Cfrac%7B1%7D%7B2%7D%20%5Clim_%7Bx%5Cto0%7D%20%5Cfrac%7Bx%7D%7B%5Cfrac%7B1%7D%7B2%7Dx%20%7D%20

%3D1

Part%E2%85%A3

%5Clim_%7Bn%5Cto%E2%88%9E%7D%20%5Cfrac%7B(n%2B114514)(n-1919810)%7D%7B%5Csum_%7Bi%3D1%7D%5En%5Csqrt%7Bi%7D%20%5Ccdot%20%5Csum_%7Bk%3D1%7D%5En%5Cfrac%7B1%7D%7B%5Csqrt%7Bk%7D%20%7D%20%20%20%7D%20%20

%3D%5Cfrac%7B1%7D%7B%5Clim_%7Bn%5Cto%E2%88%9E%7D%20%5Cfrac%7B%5Csum_%7Bi%3D1%7D%5En%5Csqrt%7Bi%7D%20%5Ccdot%20%5Csum_%7Bk%3D1%7D%5En%5Cfrac%7B1%7D%7B%5Csqrt%7Bk%7D%20%7D%20%7D%7Bn%5E2%20%7D%20%20%7D%20

%3D%5Cfrac%7B1%7D%7B%5Clim_%7Bn%5Cto%E2%88%9E%7D%5Cfrac%7B%5Csum_%7Bi%3D1%7D%5En%5Csqrt%7Bi%7D%20%20%7D%7Bn%5E%5Cfrac%7B3%7D%7B2%7D%20%20%7D%5Ccdot%20%20%20%5Clim_%7Bn%5Cto%E2%88%9E%7D%5Cfrac%7B%5Csum_%7Bk%3D1%7D%5En%5Cfrac%7B1%7D%7B%5Csqrt%7Bk%7D%20%7D%20%20%7D%7Bn%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D%20%7D%20%7D%20

%3D%5Cfrac%7B1%7D%7B%5Cint_%7B0%7D%5E%7B1%7D%5Csqrt%7Bx%7D%20dx%5Ccdot%20%20%5Cint_%7B0%7D%5E%7B1%7D%20%5Cfrac%7B1%7D%7B%5Csqrt%7Bx%7D%20%7Ddx%20%20%7D%20

=%5Cfrac%7B1%7D%7B%5Cfrac%7B2%7D%7B3%7D%5Ccdot%202%20%20%7D%20

=%5Cfrac%7B3%7D%7B4%7D%20

所以原式

%3D%5Cfrac%7B397-3%5Ctimes2-1%20%7D%7B%5Cfrac%7B3%7D%7B4%7D%20%7D%20%0A

%3D520

【數(shù)學(xué)分析】520問題解答的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國家法律
和平县| 民乐县| 潮州市| 郑州市| 镇赉县| 临清市| 左权县| 缙云县| 烟台市| 潼南县| 甘南县| 江北区| 阿巴嘎旗| 吉林省| 东台市| 保山市| 穆棱市| 黑龙江省| 泾阳县| 宁强县| 浙江省| 桦川县| 宝兴县| 尉氏县| 克什克腾旗| 道孚县| 府谷县| 乌审旗| 皮山县| 隆回县| 和龙市| 桂林市| 攀枝花市| 兴国县| 郸城县| 衡阳县| 芮城县| 什邡市| 忻州市| 通辽市| 黑龙江省|