国产精品天干天干,亚洲毛片在线,日韩gay小鲜肉啪啪18禁,女同Gay自慰喷水

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

[Calculus] Napkin Ring Problem

2021-08-14 21:25 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (鄭濤)

【Problem】

The napkin ring problem dates back to Edo Japan. Seki Kowa (1642 - 1708), the leading Japanese mathematician at the time was the first person to have solved this problem using a form of integral calculus called ''Enri''. Seki Kowa called the shape an “arc ring”.

The animation below shows a central cross-section of a sphere of radius?r%20 through which a centrally placed cylinder of radius a has been drilled out and the material removed. The remaining shape is called a napkin ring. Determine the volume of the napkin ring.


【Solution】

Consider the diagram of the cross-section of the napkin ring below. Let the radius of the sphere be %20r. Let radius of the cylindrical hole be a, and half the height of the cylindrical hole be h.

To compute the volume of the napkin ring, observe that its volume is equal to:

V%20%3D%20%7BV%7D_%7Bsphere%7D%20-%20%7BV%7D_%7Bcylinder%7D%20-%202%20%7BV%7D_%7Bspherical%20%5C%3B%20cap%7D%20


The volume of the sphere and the cylinder are well known:


%7BV%7D_%7Bsphere%7D%20%3D%20%5Cfrac%7B4%5Cpi%7D%7B3%7D%20%7Br%7D%5E%7B3%7D

%7BV%7D_%7Bcylinder%7D%20%20%3D%202%5Cpi%20h%20%7Ba%7D%5E%7B2%7D

Note that

a%5E2%20%3D%20r%5E2-h%5E2%20

Use integration to compute the volume of a spherical cap.


%7BV%7D_%7Bspherical%20%5C%3B%20cap%7D%20%3D%20%5Cint_%7Bh%7D%5E%7Br%7D%20%5Cpi%20%5Cleft(%7Br%7D%5E%7B2%7D%20-%20%7By%7D%5E%7B2%7D%20%5Cright)%20dy

%7BV%7D_%7Bspherical%20%5C%3B%20cap%7D%20%3D%20%5Cpi%20%5Cleft(%5Cfrac%7B2%7Br%7D%5E%7B3%7D%7D%7B3%7D%20-%20%7Br%7D%5E%7B2%7D%20h%20%2B%20%5Cfrac%7B%7Bh%7D%5E%7B3%7D%7D%7B3%7D%20%5Cright)%20


Hence, the volume of the napkin ring is:

%20V%20%3D%20%5Cfrac%7B4%5Cpi%7D%7B3%7D%20%7Br%7D%5E%7B3%7D%20-%202%5Cpi%20h%20%7Ba%7D%5E%7B2%7D%20-%202%20%5Cpi%20%5Cleft(%5Cfrac%7B2%7Br%7D%5E%7B3%7D%7D%7B3%7D%20-%20%7Br%7D%5E%7B2%7D%20h%20%2B%20%5Cfrac%7B%7Bh%7D%5E%7B3%7D%7D%7B3%7D%20%5Cright)

%20V%20%3D%20%5Cfrac%7B4%5Cpi%7D%7B3%7D%20%7Br%7D%5E%7B3%7D%20-%202%5Cpi%20h%20%7Ba%7D%5E%7B2%7D%20-%20%20%5Cfrac%7B4%5Cpi%7D%7B3%7D%7Br%7D%5E%7B3%7D%20%2B%202%5Cpi%20%7Br%7D%5E%7B2%7D%20h%20-%20%5Cfrac%7B2%5Cpi%7Bh%7D%5E%7B3%7D%7D%7B3%7D%20

%20V%20%3D%20-%202%5Cpi%20h%20%7Ba%7D%5E%7B2%7D%20%2B%202%5Cpi%20%7Br%7D%5E%7B2%7D%20h%20-%20%5Cfrac%7B2%5Cpi%7Bh%7D%5E%7B3%7D%7D%7B3%7D%20


Since a%5E2%20%3D%20r%5E2-h%5E2%20, we get


%20V%20%3D%20-%202%5Cpi%20h%20%5Cleft(%7Br%7D%5E%7B2%7D%20-%20%7Bh%7D%5E%7B2%7D%5Cright)%20%2B%202%5Cpi%20%7Br%7D%5E%7B2%7D%20h%20-%20%5Cfrac%7B2%5Cpi%7Bh%7D%5E%7B3%7D%7D%7B3%7D%20

%20V%20%3D%202%5Cpi%20%7Bh%7D%5E%7B3%7D%20%20-%20%5Cfrac%7B2%5Cpi%7Bh%7D%5E%7B3%7D%7D%7B3%7D%20

V%20%3D%20%5Cfrac%7B4%5Cpi%7D%7B3%7D%20%7Bh%7D%5E%7B3%7D


The volume of the napkin ring expressed in terms of the height of the cylindrical hole, where H%3D2h, is:

V%20%3D%20%5Cfrac%7B%5Cpi%7D%7B6%7D%20%7BH%7D%5E%7B3%7D

Note that this volume is independent of the radius of the sphere, who would have guessed! This looks unbelievable at first because it means that if you core out any sphere of any size so that the remaining rings have the same height, those rings will also have the same volume!



[Calculus] Napkin Ring Problem的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
汾阳市| 德保县| 大同市| 周宁县| 望谟县| 巴东县| 九寨沟县| 古田县| 大邑县| 和硕县| 清苑县| 梅河口市| 彭州市| 万源市| 新宾| 阿合奇县| 仁布县| 泰安市| 兰西县| 呼图壁县| 天台县| 新宾| 巴楚县| 德钦县| 碌曲县| 崇州市| 临清市| 陈巴尔虎旗| 广南县| 甘孜| 临桂县| 卓资县| 慈利县| 车致| 准格尔旗| 内黄县| 离岛区| 玛多县| 临汾市| 锦屏县| 夏河县|