国产精品天干天干,亚洲毛片在线,日韩gay小鲜肉啪啪18禁,女同Gay自慰喷水

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

代數(shù)數(shù)論筆記(二):二次域和圓域上跡、范和判別式的計(jì)算

2023-04-12 18:57 作者:CupsOfCubs  | 我要投稿

本節(jié)作為上一節(jié)的補(bǔ)充.

在這系列筆記里,最重要的兩個(gè)例子是二次域(quadratic field)%5Cmathbb%7BQ%7D(%0A%5Csqrt%7Bd%7D)(這里%5C%7B0%2C%201%5C%7D%5Cnot%5Cni%20d%5Cin%5Cmathbb%7BZ%7D無(wú)非平凡平方因子)以及圓域(cyclomatic field)%5Cmathbb%7BQ%7D(%0A%5Czeta_p)(這里%5Czeta_pp次單位根,p是奇素?cái)?shù)).在這一系列筆記中,我們會(huì)不斷地將新的理論用在這兩個(gè)例子上.這兩個(gè)例子有一個(gè)共同的優(yōu)點(diǎn),就是他們都是%E5%9C%A8%5Cmathbb%7BQ%7D%E4%B8%8AGalois的,這給我們的討論帶來(lái)很大方便.

先來(lái)看前者.%5Cmathbb%7BQ%7D(%0A%5Csqrt%7Bd%7D)的所有%5Cmathbb%7BQ%7D嵌入(取決于%0A%5Csqrt%7Bd%7D打到%0A%5Csqrt%7Bd%7D還是%0A-%5Csqrt%7Bd%7D)剛好構(gòu)成Galois群%5Coperatorname%7BGal%7D%5Cmathbb%7BQ%7D(%0A%5Csqrt%7Bd%7D)%2F%5Cmathbb%7BQ%7D.如果d%3E0,則%5Cmathbb%7BQ%7D(%0A%5Csqrt%7Bd%7D)的所有%5Cmathbb%7BQ%7D嵌入均是實(shí)的;如果d%3C0,則%5Cmathbb%7BQ%7D(%0A%5Csqrt%7Bd%7D)的所有%5Cmathbb%7BQ%7D嵌入均是虛的.對(duì)里面的一個(gè)元素a%2Bb%5Csqrt%7Bd%7D%5C%2C(a%2Cb%5Cin%5Cmathbb%7BQ%7D),其所有共軛元素為a%2Bb%5Csqrt%7Bd%7D%2Ca-b%5Csqrt%7Bd%7D,因此T_%7B%5Cmathbb%7BQ%7D(%5Csqrt%7Bd%7D)%2F%5Cmathbb%7BQ%7D%7D(a%2Bb%5Csqrt%7Bd%7D)%3D(a%2Bb%5Csqrt%7Bd%7D)%2B(a-b%5Csqrt%7Bd%7D)%3D2a%2CN_%7B%5Cmathbb%7BQ%7D(%5Csqrt%7Bd%7D)%2F%5Cmathbb%7BQ%7D%7D(a%2Bb%5Csqrt%7Bd%7D)%3D(a%2Bb%5Csqrt%7Bd%7D)(a-b%5Csqrt%7Bd%7D)%3Da%5E2-b%5E2d.判別式d_%7BL%2FK%7D(%5Calpha)%3D%5Cleft(%5Cdet%5Cbegin%7Bpmatrix%7D1%26a%2Bb%5Csqrt%7Bd%7D%5C%5C1%26a-b%5Csqrt%7Bd%7D%5Cend%7Bpmatrix%7D%5Cright)%5E2%3D4b%5E2d.進(jìn)一步的一個(gè)例子是d%3D-1的情形,此時(shí)N_%7B%5Cmathbb%7BQ%7D(%5Csqrt%7B-1%7D)%2F%5Cmathbb%7BQ%7D%7D(a%2Bb%5Csqrt%7B-1%7D)%3Da%5E2%2Bb%5E2與通常的復(fù)數(shù)的模長(zhǎng)是一致的.在下一節(jié)我們將看到這一點(diǎn)的威力.

%0A%5Czeta_p?的極小多項(xiàng)式是%5Cfrac%7Bx%5Ep-1%7D%7Bx-1%7D%3D1%2Bx%2B%5Ccdots%2Bx%5E%7Bp-1%7D,其所有根是%0A%5Czeta_p%2C%5Czeta_p%5E2%2C%5Ccdots%2C%5Czeta_p%5E%7Bp-1%7D%5Cmathbb%7BQ%7D(%0A%5Czeta_p)%5Cmathbb%7BQ%7Dp-1次擴(kuò)張.因而%5Cmathbb%7BQ%7D(%0A%5Czeta_p)的所有%5Cmathbb%7BQ%7D嵌入構(gòu)成Galois群%5Coperatorname%7BGal%7D%5Cmathbb%7BQ(%5Czeta_p)%2F%5Cmathbb%7BQ%7D%7D,且這個(gè)群是循環(huán)的:%5Coperatorname%7BGal%7D%5Cmathbb%7BQ%7D(%5Czeta_p)%2F%20%5Cmathbb%7BQ%7D%5Ccong(%5Cmathbb%7BZ%7D%2Fp%5Cmathbb%7BZ%7D)%5E%7B%5Ctimes%7D%5Ccong%20%5Cmathbb%7BZ%7D%2F(p-1)%5Cmathbb%7BZ%7D.所有p-1個(gè)%5Cmathbb%7BQ%7D嵌入均是虛的,兩兩成對(duì).

下面以計(jì)算d_%7B%5Cmathbb%7BQ%7D(%5Czeta_p)%2F%5Cmathbb%7BQ%7D%7D(%5Czeta_p)作為結(jié)束:利用d_%7BL%2FK%7D(%5Calpha)%3D(-1)%5E%7B%5Cfrac%7Bn(n-1)%7D%7B2%7D%7DN_%7BL%2FK%7D(m_%7BK%2C%5Calpha%7D'(%5Calpha)).下面記K%3D%5Cmathbb%7BQ%7D(%5Czeta_p).%0A%5Czeta_p的極小多項(xiàng)式記為f(x)%3D%5Cfrac%7Bx%5Ep-1%7D%7Bx-1%7D.對(duì)(x-1)f(x)%3Dx%5Ep-1兩邊求導(dǎo)得到(x-1)f'(x)%2Bf(x)%3Dpx%5E%7Bp-1%7D.代入%0A%5Czeta_p?得(%5Czeta_p-1)f'(%5Czeta_p)%3Dp%5Czeta_p%5E%7Bp-1%7D(%5Czeta_p-1)f'(%5Czeta_p)%3Dp%5Czeta_p%5E%7Bp-1%7D(%5Czeta_p-1)f'(%5Czeta_p)%3Dp%5Czeta_p%5E%7Bp-1%7D(%5Czeta_p-1)f'(%5Czeta_p)%3Dp%5Czeta_p%5E%7Bp-1%7Df'(%5Czeta_p)%3D%5Cfrac%7Bp%5Czeta_p%5E%7B-1%7D%7D%7B%5Czeta_p-1%7D.因此我們要計(jì)算d_%7BK%2F%5Cmathbb%7BQ%7D%7D(%5Czeta_p)%3D(-1)%5E%7B%5Cfrac%7B(p-1)(p-2)%7D%7B2%7D%7DN_%7BK%2F%5Cmathbb%7BQ%7D%7D(%5Cfrac%7Bp%5Czeta_p%5E%7B-1%7D%7D%7B%5Czeta_p-1%7D).由于N_%7BK%2F%5Cmathbb%7BQ%7D%7D是個(gè)同態(tài),我們只要分別計(jì)算N_%7BK%2F%5Cmathbb%7BQ%7D%7D(p),N_%7BK%2F%5Cmathbb%7BQ%7D%7D(%5Czeta_p),N_%7BK%2F%5Cmathbb%7BQ%7D%7D(%5Czeta_p-1).

N_%7BK%2F%5Cmathbb%7BQ%7D%7D(p)%3Dp%5E%7Bp-1%7D.N_%7BK%2F%5Cmathbb%7BQ%7D%7D(%5Czeta_p)%3D%5Cprod_%7Bk%3D1%7D%5E%7Bp-1%7D%5Czeta_p%5Ek%3D%5Czeta_p%5E%7B%5Cfrac%7Bp(p-1)%7D%7B2%7D%7D%3D1,N_%7BK%2F%5Cmathbb%7BQ%7D%7D(%5Czeta_p-1)%3D%5Cprod_%7Bk%3D1%7D%5E%7Bp-1%7D(%5Czeta_p%5Ek-1)%3D(-1)%5E%7Bp-1%7D%5Cprod_%7Bk%3D1%7D%5E%7Bp-1%7D(1-%5Czeta_p%5Ek).注意一個(gè)常見(jiàn)的技巧:f(x)%3D%5Cprod_%7Bk%3D1%7D%5E%7Bp-1%7D(x-%5Czeta_p%5Ek),代入x%3D1.得到%5Cprod_%7Bk%3D1%7D%5E%7Bp-1%7D(1-%5Czeta_p%5Ek)%3Df(1)%3Dp.因此N_%7BK%2F%5Cmathbb%7BQ%7D%7D(%5Czeta_p-1)%3D(-1)%5E%7Bp-1%7Dp.最終得到d_%7BK%2F%5Cmathbb%7BQ%7D%7D(%5Czeta_p)%3D(-1)%5E%7B%5Cfrac%7B(p-1)(p-2)%7D%7B2%7D%7DN_%7BK%2F%5Cmathbb%7BQ%7D%7D(%5Cfrac%7Bp%5Czeta_p%5E%7B-1%7D%7D%7B%5Czeta_p-1%7D)%3D(-1)%5E%7B%5Cfrac%7Bp-1%7D%7B2%7D%7Dp%5E%7Bp-2%7D%5C%20%5C%20%5C%20%5C%20%5Csquare


代數(shù)數(shù)論筆記(二):二次域和圓域上跡、范和判別式的計(jì)算的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
姚安县| 乌恰县| 忻州市| 钟山县| 共和县| 屏东县| 涟源市| 恩平市| 德兴市| 利津县| 嵊泗县| 秭归县| 宜阳县| 怀远县| 河津市| 周至县| 肇庆市| 张家港市| 和顺县| 汉阴县| 丘北县| 钟山县| 关岭| 天峨县| 南通市| 横山县| 隆回县| 河曲县| 临沧市| 黎川县| 云梦县| 临西县| 吴川市| 自贡市| 东乌珠穆沁旗| 宣城市| 施秉县| 哈尔滨市| 德格县| 太原市| 安丘市|