国产精品天干天干,亚洲毛片在线,日韩gay小鲜肉啪啪18禁,女同Gay自慰喷水

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

“法弦”的最小值(2023新高考Ⅰ圓錐曲線)

2023-07-08 14:12 作者:數(shù)學(xué)老頑童  | 我要投稿

在直角坐標(biāo)系xOy中,點(diǎn)Px軸的距離等于點(diǎn)P到點(diǎn)%5Cleft(%200%2C%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%20的距離,記動(dòng)點(diǎn)P的軌跡為W.

(1)求W的方程;

(2)已知矩形ABCD有三個(gè)頂點(diǎn)在W上,證明:矩形ABCD的周長大于3%5Csqrt%7B3%7D.

解:(1)設(shè)點(diǎn)P的坐標(biāo)為%5Cleft(%20x%2Cy%20%5Cright)%20,由題可知:

%5Cleft%7C%20y%20%5Cright%7C%3D%5Csqrt%7B%5Cleft(%20x-0%20%5Cright)%20%5E2%2B%5Cleft(%20y-%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%20%5E2%7D,

化簡得:%5Ccolor%7Bred%7D%7By%3Dx%5E2%2B%5Cfrac%7B1%7D%7B4%7D%7D.

(2)不妨設(shè)A、BDW上,設(shè)A的坐標(biāo)為%5Cleft(%20x_0%2Cx_%7B0%7D%5E%7B2%7D%2B%5Cfrac%7B1%7D%7B4%7D%20%5Cright)%20,

設(shè)直線ABAD的斜率分別為m、n,不妨設(shè)%5Ccolor%7Bred%7D%7Bn%3C0%3Cm%7D,

且易知%5Ccolor%7Bred%7D%7Bmn%3D-1%7D.

直線AB的方程為

y-%5Cleft(%20x_%7B0%7D%5E%7B2%7D%2B%5Cfrac%7B1%7D%7B4%7D%20%5Cright)%20%3Dm%5Cleft(%20x-x_0%20%5Cright)%20,

W聯(lián)立得:

%5Cleft(%20x-x_0%20%5Cright)%20%5Cleft%5B%20x-%5Cleft(%20m-x_0%20%5Cright)%20%5Cright%5D%20%3D0

%5Ccolor%7Bred%7D%7Bx_B%3Dm-x_0%7D,故

%5Cbegin%7Baligned%7D%0A%09%5Ccolor%7Bred%7D%7B%5Cleft%7C%20AB%20%5Cright%7C%7D%26%3D%5Csqrt%7Bm%5E2%2B1%7D%5Ccdot%20%5Cleft%7C%20x_0-%5Cleft(%20m-x_0%20%5Cright)%20%5Cright%7C%5C%5C%0A%09%26%3D%5Ccolor%7Bred%7D%7B%5Csqrt%7Bm%5E2%2B1%7D%5Ccdot%20%5Cleft%7C%202x_0-m%20%5Cright%7C%7D%5C%5C%0A%5Cend%7Baligned%7D

同理:%5Ccolor%7Bred%7D%7B%5Cleft%7C%20AD%20%5Cright%7C%3D%5Csqrt%7Bn%5E2%2B1%7D%5Ccdot%20%5Cleft%7C%202x_0-n%20%5Cright%7C%7D.

所以:

%5Ccolor%7Bred%7D%7B%5Cleft%7C%20AB%20%5Cright%7C%2B%5Cleft%7C%20AD%20%5Cright%7C%3D%5Csqrt%7Bm%5E2%2B1%7D%5Ccdot%20%5Cleft%7C%202x_0-m%20%5Cright%7C%2B%5Csqrt%7Bn%5E2%2B1%7D%5Ccdot%20%5Cleft%7C%202x_0-n%20%5Cright%7C%7D

%5Ccolor%7Bred%7D%7Bf%5Cleft(%20x_0%20%5Cright)%20%7D%3D%5Csqrt%7Bm%5E2%2B1%7D%5Ccdot%20%5Cleft%7C%202x_0-m%20%5Cright%7C%2B%5Csqrt%7Bn%5E2%2B1%7D%5Ccdot%20%5Cleft%7C%202x_0-n%20%5Cright%7C

其中

%5Ccolor%7Bred%7D%7Bx_0%5Cin%20%5Cleft(%20-%5Cinfty%20%2C%5Cfrac%7Bn%7D%7B2%7D%20%5Cright)%20%5Ccup%20%5Cleft(%20%5Cfrac%7Bn%7D%7B2%7D%2C%5Cfrac%7Bm%7D%7B2%7D%20%5Cright)%20%5Ccup%20%5Cleft(%20%5Cfrac%7Bm%7D%7B2%7D%2C%2B%5Cinfty%20%5Cright)%20%7D


f%5Cleft(%20x_0%20%5Cright)%20%3D%5Cbegin%7Bcases%7D%09%5Csqrt%7Bm%5E2%2B1%7D%5Ccdot%20%5Ccolor%7Bred%7D%7B%5Cleft(%20m-2x_0%20%5Cright)%7D%20%2B%5Csqrt%7Bn%5E2%2B1%7D%5Ccdot%20%5Ccolor%7Bred%7D%7B%5Cleft(%20n-2x_0%20%5Cright)%7D%20%2C%5Ccolor%7Bred%7D%7Bx%3C%5Cfrac%7Bn%7D%7B2%7D%7D%2C%5C%5C%09%5Csqrt%7Bm%5E2%2B1%7D%5Ccdot%20%5Ccolor%7Bred%7D%7B%5Cleft(%20m-2x_0%20%5Cright)%7D%20%2B%5Csqrt%7Bn%5E2%2B1%7D%5Ccdot%20%5Ccolor%7Bred%7D%7B%5Cleft(%202x_0-n%20%5Cright)%7D%20%2C%5Ccolor%7Bred%7D%7B%5Cfrac%7Bn%7D%7B2%7D%3Cx%3C%5Cfrac%7Bm%7D%7B2%7D%7D%2C%5C%5C%09%5Csqrt%7Bm%5E2%2B1%7D%5Ccdot%20%5Ccolor%7Bred%7D%7B%5Cleft(%202x_0-m%20%5Cright)%7D%20%2B%5Csqrt%7Bn%5E2%2B1%7D%5Ccdot%20%5Ccolor%7Bred%7D%7B%5Cleft(%202x_0-n%20%5Cright)%7D%20%2C%5Ccolor%7Bred%7D%7Bx%3E%5Cfrac%7Bm%7D%7B2%7D%7D%2C%5C%5C%5Cend%7Bcases%7D

當(dāng)x%5Cin%20%5Ccolor%7Bred%7D%7B%5Cleft(%20-%5Cinfty%20%2C%5Cfrac%7Bn%7D%7B2%7D%20%5Cright)%20%7D,f%5Cleft(%20x_0%20%5Cright)%20%5Ccolor%7Bred%7D%7B%5Csearrow%20%7D;

當(dāng)x%5Cin%20%5Ccolor%7Bred%7D%7B%5Cleft(%20%5Cfrac%7Bm%7D%7B2%7D%2C%2B%5Cinfty%20%5Cright)%20%7Df%5Cleft(%20x_0%20%5Cright)%20%5Ccolor%7Bred%7D%7B%5Cnearrow%20%7D,

%5Ccolor%7Bred%7D%7Bf%5Cleft(%20x_0%20%5Cright)%20%3E%5Cmin%20%5Cleft%5C%7B%20f%5Cleft(%20%5Cfrac%7Bm%7D%7B2%7D%20%5Cright)%20%2Cf%5Cleft(%20%5Cfrac%7Bn%7D%7B2%7D%20%5Cright)%20%5Cright%5C%7D%20%7D.

%5Cbegin%7Baligned%7D%0A%09f%5Cleft(%20%5Cfrac%7Bm%7D%7B2%7D%20%5Cright)%20%26%3D%5Csqrt%7Bn%5E2%2B1%7D%5Ccdot%20%5Cleft%7C%20m-n%20%5Cright%7C%5C%5C%0A%09%26%3D%5Csqrt%7B%5Cleft(%20-%5Cfrac%7B1%7D%7Bm%7D%20%5Cright)%20%5E2%2B1%7D%5Ccdot%20%5Cleft%7C%20m-%5Cleft(%20-%5Cfrac%7B1%7D%7Bm%7D%20%5Cright)%20%5Cright%7C%5C%5C%0A%09%26%3D%5Ccolor%7Bred%7D%7B%5Csqrt%7B%5Cfrac%7B%5Cleft(%20m%5E2%2B1%20%5Cright)%20%5E3%7D%7Bm%5E4%7D%7D%7D%5C%5C%0A%5Cend%7Baligned%7D

%5Cbegin%7Baligned%7D%0A%09f%5Cleft(%20%5Cfrac%7Bn%7D%7B2%7D%20%5Cright)%20%26%3D%5Csqrt%7Bm%5E2%2B1%7D%5Ccdot%20%5Cleft%7C%20n-m%20%5Cright%7C%5C%5C%0A%09%26%3D%5Csqrt%7B%5Cleft(%20-%5Cfrac%7B1%7D%7Bn%7D%20%5Cright)%20%5E2%2B1%7D%5Ccdot%20%5Cleft%7C%20-%5Cfrac%7B1%7D%7Bn%7D-n%20%5Cright%7C%5C%5C%0A%09%26%3D%5Ccolor%7Bred%7D%7B%5Csqrt%7B%5Cfrac%7B%5Cleft(%20n%5E2%2B1%20%5Cright)%20%5E3%7D%7Bn%5E4%7D%7D%7D%5C%5C%0A%5Cend%7Baligned%7D

%5Ccolor%7Bred%7D%7Bg%5Cleft(%20t%20%5Cright)%20%3D%5Csqrt%7B%5Cfrac%7B%5Cleft(%20t%2B1%20%5Cright)%20%5E3%7D%7Bt%5E2%7D%7D%7Dt%5Cin%20%5Cleft(%200%2C%2B%5Cinfty%20%5Cright)%20,

%5Ccolor%7Bred%7D%7Bf%5Cleft(%20x_0%20%5Cright)%20%3Eg%5Cleft(%20t%20%5Cright)%20_%7B%5Cmin%7D%7D.

%5Cbegin%7Baligned%7D%0A%09g'%5Cleft(%20t%20%5Cright)%20%26%3D%5Cfrac%7B1%7D%7B2%5Csqrt%7B%5Cfrac%7B%5Cleft(%20t%2B1%20%5Cright)%20%5E3%7D%7Bt%5E2%7D%7D%7D%5Ccdot%20%5Cfrac%7B3%5Cleft(%20t%2B1%20%5Cright)%20%5E2%5Ccdot%20t%5E2-%5Cleft(%20t%2B1%20%5Cright)%20%5E3%5Ccdot%202t%7D%7Bt%5E4%7D%5C%5C%0A%09%26%3D%5Cfrac%7B%5Csqrt%7Bt%2B1%7D%5Ccolor%7Bred%7D%7B%5Cleft(%20t-2%20%5Cright)%7D%7D%7B2t%5E2%7D%5C%5C%0A%5Cend%7Baligned%7D

g'%5Cleft(%20t%20%5Cright)%20%3D0,得t%3D2,

當(dāng)t%5Cin%20%5Cleft(%200%2C2%20%5Cright)%20,g%E2%80%99%5Cleft(%20t%20%5Cright)%20%3C0,g%5Cleft(%20t%20%5Cright)%20%5Csearrow%20

當(dāng)t%5Cin%20%5Cleft(%202%2C%2B%5Cinfty%20%5Cright)%20,g'%5Cleft(%20t%20%5Cright)%20%3E0g%5Cleft(%20t%20%5Cright)%20%5Cnearrow%20,

g%5Cleft(%20t%20%5Cright)%20_%7B%5Cmin%7D%3Dg%5Cleft(%202%20%5Cright)%20%3D%5Ccolor%7Bred%7D%7B%5Cfrac%7B3%5Csqrt%7B3%7D%7D%7B2%7D%7D.

此即圖中弦%5Ccolor%7Bred%7D%7BAQ%7D長度的最小值).

故矩形ABCD的周長大于3%5Csqrt%7B3%7D.

此題中的不等式鏈:

%5Cleft%7C%20AB%20%5Cright%7C%2B%5Cleft%7C%20AD%20%5Cright%7C%3E%5Cleft%7C%20AQ%20%5Cright%7C%5Cgeqslant%20%5Cfrac%7B3%5Csqrt%7B3%7D%7D%7B2%7D.

%5Cleft%7C%20AB%20%5Cright%7C%2B%5Cleft%7C%20AD%20%5Cright%7C之所以不能等于%5Cleft%7C%20AQ%20%5Cright%7C是因?yàn)椋?/p>

%5Cleft%7C%20AB%20%5Cright%7C%5Cleft%7C%20AD%20%5Cright%7C都不能為%5Ccolor%7Bred%7D0.

下個(gè)新定義:

我們把過拋物線x%5E2%3D2py上一點(diǎn)M%5Cleft(%20x_0%2Cy_0%20%5Cright)%20,且與M處的切線垂直的弦MN,叫做拋物線的法弦,并且一般地,法弦長

%5Ccolor%7Bred%7D%7B%5Cleft%7C%20MN%20%5Cright%7C%5Cgeqslant%203%5Csqrt%7B3%7Dp%7D,

當(dāng)且僅當(dāng)%5Ccolor%7Bred%7D%7By_0%3Dp%7D時(shí),取得最小值.

“法弦”的最小值(2023新高考Ⅰ圓錐曲線)的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國家法律
屯门区| 安仁县| 延吉市| 宿松县| 宁城县| 临颍县| 虹口区| 德州市| 沙田区| 湄潭县| 清新县| 闵行区| 铜陵市| 漯河市| 饶平县| 南江县| 巴中市| 富阳市| 罗田县| 蒙阴县| 嘉义县| 遵义县| 宁化县| 石楼县| 博兴县| 大宁县| 望奎县| 北京市| 宣恩县| 黑山县| 水城县| 韩城市| 郎溪县| 民乐县| 青田县| 高台县| 方正县| 新昌县| 尼木县| 邯郸市| 余江县|