国产精品天干天干,亚洲毛片在线,日韩gay小鲜肉啪啪18禁,女同Gay自慰喷水

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

[Number Theory] Dayan Method

2021-09-27 20:09 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (鄭濤)

The following number theory problem is from the ''Shushu Jiuzhang'' (數(shù)書九章) by Qin Jiushao (秦九韶, 1202 - 1261 AD). The solution presented here outlines Qin Jiushao's version of the Euclidean algorithm (大衍求一術(shù) ''dayan qiuyi shu'') and his generalized Chinese Remainder Theorem (大衍總數(shù)術(shù) ''dayan zongshu shu'').

Qin Jiushao


【Problem】

There are three farmers of the highest class. As for the grain they harvested from their fields, when making use of a full standard ''dou'', the amounts are the same. All of them go to different places to sell their grain. After selling his grain on the official markets of his own prefecture, A has 3 ''dou'' 2 ''sheng'' remaining. After selling his grain to the villagers of Anji, B has 7 ''dou'' remaining. After selling his grain to an agent from Pingjiang, C has 3 ''dou'' remaining. How much grain did the farmers have altogether, and how much did each farmer sell in terms of the respective capacity rates in ''dan''?

In the solution, Qin Jiushao reveals that each market has a different unit of volume called ''hu'' (斛): the official market ''hu'' is 8 ''dou'' 3 ''sheng'', the Anji ''hu'' is 1 ''dan'' 1 ''dou'', and the Pingjiang ''hu'' is 1 ''dan'' 3 ''dou'' 5 ''sheng''.

Since 1 ''dan'' = 10 ''dou'' = 100 ''sheng'' and 1 ''dou'' = 10 ''sheng'', this problem is a system of modular congruences:

%5Cbegin%7Bcases%7D%0A%20N%20%26%5Cequiv%2032%20%5Cpmod%7B83%7D%20%5C%5C%0A%20N%20%26%5Cequiv%2070%20%5Cpmod%7B110%7D%20%5C%5C%0A%20N%20%26%5Cequiv%2030%20%5Cpmod%7B135%7D%0A%5Cend%7Bcases%7D

Calculate the lowest positive integer solution.

【Solution】

Part 1: Determine the ''dingshu'' 求定數(shù)

The initial problem begins with the moduli, which Qin Jiushao called ''wenshu'' (問(wèn)數(shù)), are m_1%20%3D%2083%2C%20m_2%20%3D%20110%2C%20m_3%20%3D%20135. Since the moduli are natural numbers, they are referred to as ''yuanshu'' (元數(shù)) and the remainders r_1%20%3D%2032%2C%20r_2%20%3D%2070%2C%20r_3%20%3D%2030.

%5Cbegin%7Bcases%7D%0A%20N%20%26%5Cequiv%2032%20%5Cpmod%7B83%7D%20%5C%5C%0A%20N%20%26%5Cequiv%2070%20%5Cpmod%7B110%7D%20%5C%5C%0A%20N%20%26%5Cequiv%2030%20%5Cpmod%7B135%7D%0A%5Cend%7Bcases%7D

Notice that the second and third moduli are not coprime because 110 and 135 share a common divisor 5. This is determined by an often lengthy procedure called the ''lianhuan qiudeng'' (連環(huán)求等). Qin Jiushao’s algorithm prescribes that the congruence of odd moduli be reduced, which in this case is the third moduli. The new moduli, called ''dingshu'' (定數(shù)), are m_%7B1%7D%5E%7B'%7D%20%3D%2083%2C%20m_%7B2%7D%5E%7B'%7D%20%3D%20110%2C%20m_%7B3%7D%5E%7B'%7D%20%3D%2027. Because 30%20%5Cequiv%203%20%5Cpmod%7B27%7D, the new remainder of the third congruence is 3. Hence, the new remainders are r_%7B1%7D%5E%7B'%7D%20%3D%2032%2C%20r_%7B2%7D%5E%7B'%7D%20%3D%2070%2C%20r_%7B3%7D%5E%7B'%7D%20%3D%203.

Subsequently, the new problem with coprime moduli to solve is:

%5Cbegin%7Bcases%7D%0A%20N%20%26%5Cequiv%2032%20%5Cpmod%7B83%7D%20%5C%5C%0A%20N%20%26%5Cequiv%2070%20%5Cpmod%7B110%7D%20%5C%5C%0A%20N%20%26%5Cequiv%203%20%5Cpmod%7B27%7D%0A%5Cend%7Bcases%7D


Part 2: Determine the ''yanmu'' and the ''yanshu'' 求衍母和衍數(shù)

First calculate the ''yanmu'' (衍母) M, which is the product of the coprime moduli.

M%20%3D%2083%20%5Ctimes%20110%20%5Ctimes%2027%20%3D%20246510

Divide the ''yanmu''(衍母) by each moduli to obtain each ''yanshu''(衍數(shù)) M_i%20.


M_1%20%3D%20%5Cfrac%7BM%7D%7Bm_%7B1%7D%5E%7B'%7D%7D%20%3D%20%5Cfrac%7B246510%7D%7B83%7D%20%3D%202970

M_2%20%3D%20%5Cfrac%7BM%7D%7Bm_%7B2%7D%5E%7B'%7D%7D%20%3D%20%5Cfrac%7B246510%7D%7B110%7D%20%3D%202241

M_3%20%3D%20%5Cfrac%7BM%7D%7Bm_%7B3%7D%5E%7B'%7D%7D%20%3D%20%5Cfrac%7B246510%7D%7B27%7D%20%3D%209130


Part 3: Determine the ''chenglü'' 求乘率

The next step is to determine the ''qishu'' (奇數(shù)) K_i, which satisfies M_i%20%5Cequiv%20K_i%20%5Cpmod%7Bm_%7Bi%7D%5E%7B'%7D%7D%20.


2970%20%5Cequiv%2065%20%5Cpmod%7B83%7D%20%5CRightarrow%20K_1%20%3D%2065%20

2241%20%5Cequiv%2041%20%5Cpmod%7B110%7D%20%5CRightarrow%20K_2%20%3D%2041

9130%20%5Cequiv%204%20%5Cpmod%7B27%7D%20%5CRightarrow%20K_3%20%3D%204

Next solve each congruence K_i%20x_i%20%5Cequiv%201%20%5Cpmod%7Bm_%7Bi%7D%5E%7B'%7D%7D, where x_i%20 is called the ''chenglü'' (乘率). Qin Jiushao solves each congruence with what he calls the ''dayan qiuyi shu'' (大衍求一術(shù)), which is the Euclidean algorithm.


%5Cbegin%7Bcases%7D%0A%2065%20x_1%20%26%5Cequiv%201%20%5Cpmod%7B83%7D%20%5C%5C%0A%2041%20x_2%20%26%5Cequiv%201%20%5Cpmod%7B110%7D%20%5C%5C%0A%204%20x_3%20%26%5Cequiv%201%20%5Cpmod%7B135%7D%0A%5Cend%7Bcases%7D


Here we will demonstrate how the ''dayan qiuyi shu'' works for %2065%20x_1%20%5Cequiv%201%20%5Cpmod%7B83%7D%20.

Step 1: Set up the ''tianyuan'' (天元), ''qishu'' (奇數(shù)), and ''dingshu'' (定數(shù)).


Step 2: Perform the calculations and sequencing of the ''dayan qiuyi shu''.


The solution for this system is x_1%20%3D%2023%2C%20x_2%20%3D%2051%2C%20x_3%20%3D%207%20.

Part 4: Determine the ''yongshu'' and the ''zongshu'' 求用數(shù)和總數(shù)

The ''yongshu'' (用數(shù)) are the products M_i%20x_i%20

M_1%20x_1%20%3D%202970%20%5Ctimes%2023%20%3D%2068310%20

M_2%20x_2%20%3D%202241%20%5Ctimes%2051%20%3D%20114271

M_3%20x_3%20%3D%209131%20%5Ctimes%207%20%3D%2063910

The ''zongshu'' (總數(shù)) is the sum %5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20M_i%20x_i%20r_%7Bi%7D%5E%7B'%7D%20.

68310%20%5Ctimes%2032%20%2B%20114291%20%5Ctimes%2070%20%2B%2063910%20%5Ctimes%203%20%3D%2010378020%20


5. Determine the minimum non-negative solution

10378020%20%5Cequiv%2024600%20%5Cpmod%7B246510%7D%20

So the total amount of rice each farmer sold 24600 ''sheng'' or 246 ''dan'', and the total amount sold is 738 ''dan''.



[Number Theory] Dayan Method的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
连江县| 慈溪市| 吉安县| 徐汇区| 扬州市| 潜江市| 渝北区| 高青县| 鄂托克前旗| 出国| 剑阁县| 宁城县| 溧水县| 乌拉特前旗| 崇仁县| 峨眉山市| 扎鲁特旗| 甘洛县| 万州区| 灵璧县| 顺昌县| 柳河县| 启东市| 集安市| 通化市| 华容县| 报价| 密山市| 祁东县| 广汉市| 枝江市| 天镇县| 通州区| 乌鲁木齐县| 石嘴山市| 彩票| 阿图什市| 卢龙县| 荔波县| 鹿邑县| 霍山县|