国产精品天干天干,亚洲毛片在线,日韩gay小鲜肉啪啪18禁,女同Gay自慰喷水

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

[Calculus] Integral of Inverse Tangent

2021-10-07 09:49 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (鄭濤)

【Problem】

This problem is a good exercise on integration by parts and integration by substitution.
Compute the integral

%20%5Cint%20%5Carctan(x)%20dx

【Solution】

Step 1:Integration by Parts

Let u%20%3D%20%5Carctan(x) and %20dv%20%3D%20(1)dx.

Then du%20%3D%20%5Cfrac%7B1%7D%7B1%2Bx%5E2%7D%20dx%20 and v%20%3D%20x%20.

By the integration by parts

%5Cint%20udv%20%3D%20uv%20-%20%5Cint%20vdu

we get

%5Cint%20%5Carctan(x)%20dx%20%20%3D%20%5Carctan(x)%5Ccdot%20x%20-%20%5Cint%20%5Cfrac%7Bx%7D%7B1%2Bx%5E2%7D%20dx


Step 2:Integration by Substitution

Now focus on the integral %5Cint%20%5Cfrac%7Bx%7D%7B1%2Bx%5E2%7D%20dx%20. Use the substitution method for this integral.

Let u%20%3D%201%20%2Bx%5E2, then du%20%3D%202x%20dx.

Therefore,

%5Cint%20%5Cfrac%7Bx%7D%7B1%2Bx%5E2%7D%20dx%20%3D%20%5Cfrac%7B1%7D%7B2%7D%5Cint%20%5Cfrac%7B1%7D%7Bu%7D%20du%20

%5Cint%20%5Cfrac%7Bx%7D%7B1%2Bx%5E2%7D%20dx%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Cln%7C1%2Bx%5E2%7C


Consequently, the complete integral is

%20%5Cint%20%5Carctan(x)%20dx%20%3D%20x%5Carctan(x)%20-%20%5Cfrac%7B1%7D%7B2%7D%20%5Cln%7C1%2Bx%5E2%7C%20%2B%20C

[Calculus] Integral of Inverse Tangent的評論 (共 條)

分享到微博請遵守國家法律
垣曲县| 绥宁县| 荔浦县| 双鸭山市| 金山区| 高州市| 遵义市| 霍城县| 华池县| 房产| 云林县| 山西省| 乌兰浩特市| 大连市| 北票市| 兴安盟| 永和县| 隆化县| 库车县| 囊谦县| 玉林市| 茌平县| 安达市| 定兴县| 固原市| 牡丹江市| 徐汇区| 蚌埠市| 泰宁县| 富宁县| 海原县| 同仁县| 石屏县| 济阳县| 宿州市| 乳源| 沅江市| 伊金霍洛旗| 贡嘎县| 婺源县| 托里县|