国产精品天干天干,亚洲毛片在线,日韩gay小鲜肉啪啪18禁,女同Gay自慰喷水

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

【直播預(yù)告】SFFAI 136 通信強(qiáng)化學(xué)習(xí)專題

2022-02-11 16:14 作者:人工智能前沿講習(xí)  | 我要投稿

SFFAI論壇已開放注冊

詳情點(diǎn)擊查看:https://bbs.sffai.com/d/312

注:騰訊會議直播地址會分享在交流群內(nèi)


講者介紹

于會涵,北京郵電大學(xué)智能感知與計算教研中心研究生,主要研究方向?yàn)樯疃葟?qiáng)化學(xué)習(xí)在通信網(wǎng)絡(luò)中的應(yīng)用。目前已在WCNC會議上發(fā)表論文。


分享題目

Deep Reinforcement Learning Based Beamforming for Throughput Maximization in Ultra-Dense Networks


分享摘要

Ultra-dense network (UDN) is a promising technology for 5G and beyond communication systems to meet the requirements of explosive data traffic. However, the dense distribution of wireless terminals potentially leads to severe interference and deteriorate network performance. To address this issue, beamforming is widely used to coordinate the interference in UDNs and improve receive gains by controlling the phase of multiple antennas. In this paper, we propose a multi-agent deep reinforcement learning (DRL) based beamforming algorithm to achieve more dynamic and fast beamforming adjustment. In the proposed algorithm, the agents inside beamforming controllers are distributively trained while exchanging partial channel state information (CSI) for better optimizing beamforming vectors to achieve maximized throughputs in UDNs. The evaluation results demonstrate that the proposed algorithm significantly improves the computation efficiency, as well as achieves the highest network throughput compared to several baselines.


分享亮點(diǎn)

1. We proposed a muti-agent DRL-based algorithm to improve the beamforming computation efficiency drastically. Agents train their deep Q-networks (DQNs) and execute the actions distributedly. Each agent only needs to exchange a part of the global CSI during the entire training phase.

2.?To improve the computation efficiency, discrete actions are used instead of continuous actions. In addition, we divided the beamformer into two parts, namely, the transmit power and the beam direction in order to minimize the interference.

3.?We designed a specific reward function to make sure the transmission rates of primary users are larger than a given threshold, and avoid to generate too much interference to secondary users.?


直播時間

2022年2月13日(周日)20:00—21:00 線上直播

關(guān)注微信公眾號:人工智能前沿講習(xí),對話框回復(fù)“SFFAI136”,獲取入群二維碼



【直播預(yù)告】SFFAI 136 通信強(qiáng)化學(xué)習(xí)專題的評論 (共 條)

分享到微博請遵守國家法律
天津市| 大名县| 刚察县| 南开区| 宜昌市| 莎车县| 西宁市| 罗江县| 济南市| 红桥区| 简阳市| 铜川市| 奉贤区| 台北市| 社旗县| 张家口市| 理塘县| 广丰县| 裕民县| 方正县| 彰化市| 临沭县| 庄浪县| 濮阳市| 甘泉县| 依安县| 汝城县| 同德县| 抚顺县| 鄄城县| 策勒县| 海宁市| 娄底市| 子长县| 房产| 无为县| 滨州市| 南溪县| 丁青县| 攀枝花市| 塔城市|