国产精品天干天干,亚洲毛片在线,日韩gay小鲜肉啪啪18禁,女同Gay自慰喷水

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

(圓錐曲線)利用兩點式的變換來解決常見問題

2022-08-24 22:59 作者:因戀相思久  | 我要投稿


先來一道開胃菜

拋物線C%EF%BC%9Ay%5E2%3D2px%20%EF%BC%88p%EF%BC%9E0%EF%BC%89上一定點P%EF%BC%88x_%7B0%7D%EF%BC%8Cy_%7B0%7D%20%EF%BC%89%EF%BC%88y_%7B0%7D%20%EF%BC%9E0%EF%BC%89作兩條直線分別交拋物線于A%EF%BC%88x_%7B1%7D%20%EF%BC%8Cy_%7B1%7D%20%EF%BC%89%EF%BC%8CB%EF%BC%88x_%7B2%7D%20%EF%BC%8Cy_%7B2%7D%20%EF%BC%89.

問:當(dāng)PA,PB的斜率存在且傾斜角互補時,求%5Cfrac%7By_%7B1%7D%20%2By_%7B2%7D%20%7D%7By_%7B0%7D%20%7D%20的值,并證明直線AB的斜率是非零常數(shù)

解:.

因為直線PA:%EF%BC%88y_%7B1%7D%20%2By_%7B0%7D%20%EF%BC%89y%3D2px%2By_%7B1%7D%20y_%7B0%7D%20

直線PB:%EF%BC%88y_%7B2%7D%20%2By_%7B0%7D%20%EF%BC%89y%3D2px%2By_%7B2%7D%20y_%7B0%7D%20

直線AB:%EF%BC%88y_%7B1%7D%20%2By_%7B2%7D%20%EF%BC%89y%3D2px%2By_%7B1%7D%20y_%7B2%7D%20

當(dāng)PA,PB的斜率存在且傾斜角互補時,即k_%7BAP%7D%2B%20k_%7BBP%7D%20%3D0

所以%5Cfrac%7B2p%7D%7By_%7B1%7D%20%2By_%7B0%7D%20%7D%20%2B%5Cfrac%7B2p%7D%7By_%7B2%7D%20%2By_%7B0%7D%20%7D%20%3D0

化簡有y_%7B1%7D%20%2By_%7B2%7D%20%3D-2y_%7B0%7D%20

所以%5Cfrac%7By_%7B1%7D%20%2By_%7B2%7D%20%7D%7By_%7B0%7D%20%7D%20%3D-2

k_%7BAB%7D%20%3D%5Cfrac%7B2p%7D%7B%7By_%7B1%7D%20%2By_%7B2%7D%20%7D%7D%20%3D-%5Cfrac%7Bp%7D%7By_%7B0%7D%20%7D%20

升級版:

已知拋物線%5CGamma%20%20%EF%BC%9Ay%5E2%3D2px%20%EF%BC%88p%EF%BC%9E0%EF%BC%89上三點直線A%EF%BC%882%2C2%EF%BC%89%EF%BC%8CB%EF%BC%8CC,直線AC,AB是圓%EF%BC%88x-2%EF%BC%89%5E2%2By%5E2%3D1的兩條切線,求直線BC的方程

解:

A代進%5CGamma%20p%3D1

設(shè)B%EF%BC%88x_%7B1%7D%20%EF%BC%8Cy_%7B1%7D%20%EF%BC%89%EF%BC%8CC%EF%BC%88x_%7B2%7D%20%EF%BC%8Cy_%7B2%7D%20%EF%BC%89

直線AB:%EF%BC%88y_%7B1%7D%20%2B2%20%EF%BC%89y%3D2x%2B2y_%7B1%7D%20

直線AC:%EF%BC%88y_%7B2%7D%20%2B2%20%EF%BC%89y%3D2x%2B2y_%7B2%7D%20

直線BC:%EF%BC%88y_%7B1%7D%20%2By_%7B2%7D%20%EF%BC%89y%3D2x%2By_%7B1%7D%20y_%7B2%7D%20

直線AB與圓相切,由點到直線距離公式有

%5Cfrac%7B%5Cvert%204%2B2y_%7B1%7D%20%20%5Cvert%20%7D%7B%5Csqrt%7B2%5E2%2B%20%EF%BC%88y_%7B1%7D%20%2B2%EF%BC%89%5E2%20%7D%20%7D%20%3D1

化簡有3y_%7B1%7D%20%5E2%2B12y_%7B1%7D%20%2B8%3D0

同理3y_%7B2%7D%20%5E2%2B12y_%7B2%7D%20%2B8%3D0

所以

y_%7B1%7D%20y_%7B2%7D%20%3D%5Cfrac%7B8%7D%7B3%7D%20%EF%BC%8Cy_%7B1%7D%2B%20y_%7B2%7D%3D-4%EF%BC%88%E5%90%8C%E6%9E%84%2B%E9%9F%A6%E8%BE%BE%EF%BC%89

所以直線BC為-4y%3D2x%2B%5Cfrac%7B8%7D%7B3%7D%20

3x%2B6y%2B4%3D0

再來個加強版(2021全國甲卷)

(1)設(shè)拋物線Cy%5E2%3D2px%EF%BC%88p%EF%BC%9E0%EF%BC%89,不妨令P%EF%BC%881%EF%BC%8C%5Csqrt%7B2p%7D%20%EF%BC%89

由幾何關(guān)系(射影定理)

1%3D%EF%BC%88%5Csqrt%7B2p%7D%20%EF%BC%89%5E2

解得p%3D%5Cfrac%7B1%7D%7B2%7D%20

拋物線C%E4%B8%BA%EF%BC%9Ay%5E2%3Dx

顯然%5Codot%20M%E7%9A%84%E6%96%B9%E7%A8%8B%E4%B8%BA%EF%BC%88x-2%EF%BC%89%5E2%2By%5E2%3D1%20

(2)

設(shè)A_%7B1%7D%20%EF%BC%88x_%7B1%7D%20%EF%BC%8Cy_%7B1%7D%20%EF%BC%89%EF%BC%8CA_%7B2%7D%20%EF%BC%88x_%7B2%7D%20%EF%BC%8Cy_%7B2%7D%20%EF%BC%89%2CA_%7B3%7D%20%EF%BC%88x_%7B3%7D%EF%BC%8C%20y_%7B3%7D%20%EF%BC%89

直線A_%7B1%7D%20A_%7B2%7D%20%EF%BC%9A%EF%BC%88y_%7B1%7D%20%2By_%7B2%7D%20%EF%BC%89y%3Dx%2By_%7B1%7D%20y_%7B2%7D%20

直線A_%7B1%7D%20A_%7B3%7D%20%EF%BC%9A%EF%BC%88y_%7B1%7D%20%2By_%7B3%7D%20%EF%BC%89y%3Dx%2By_%7B1%7D%20y_%7B3%7D%20

直線A_%7B2%7D%20A_%7B3%7D%20%EF%BC%9A%EF%BC%88y_%7B2%7D%20%2By_%7B3%7D%20%EF%BC%89y%3Dx%2By_%7B2%7D%20y_%7B3%7D%20

%E5%9B%A0%E4%B8%BA%E7%9B%B4%E7%BA%BFA_%7B1%7D%20A_%7B2%7D%20%E4%B8%8E%5Codot%20%20M%E7%9B%B8%E5%88%87

%5Cfrac%7B%5Cvert%202%2By_%7B1%7D%20y_%7B2%7D%20%20%5Cvert%20%7D%7B%5Csqrt%7B1%2B%EF%BC%88y_%7B1%7D%20%2By_%7B2%7D%20%EF%BC%89%5E2%20%7D%20%7D%20%3D1

化簡有

%EF%BC%88y_%7B1%7D%5E2%20-1%20%EF%BC%89y_%7B2%7D%5E2%2B2y_%7B1%7D%20y_%7B2%7D%20%2B3-y_%7B1%7D%20%5E2%3D0(注意化簡要的是%20y_%7B2%7D%20

同理

%EF%BC%88y_%7B1%7D%5E2%20-1%20%EF%BC%89y_%7B3%7D%5E2%2B2y_%7B1%7D%20y_%7B3%7D%20%2B3-y_%7B1%7D%20%5E2%3D0

所以

y_%7B2%7D%20%2By_%7B3%7D%20%3D%5Cfrac%7B-2y_%7B1%7D%20%7D%7By_%7B1%7D%5E2-1%20%20%7D%20%EF%BC%8Cy_%7B2%7D%20y_%7B3%7D%3D%5Cfrac%7B3-y_%7B1%7D%5E2%20%7D%7By_%7B1%7D%5E2-1%20%20%7D

所以直線A_%7B2%7D%20A_%7B3%7D%20方程為%5Cfrac%7B-2y_%7B1%7D%20%7D%7By_%7B1%7D%5E2-1%20%20%7D%20y%3Dx%2B%5Cfrac%7B3-y_%7B1%7D%5E2%20%7D%7By_%7B1%7D%5E2-1%20%20%7D

%EF%BC%88y_%7B1%7D%5E2-1%20%EF%BC%89x%2B2y_%7B1%7Dy%2B3-y_%7B1%7D%5E2%3D0%20

設(shè)直線A_%7B2%7D%20A_%7B3%7D%20%5Codot%20M距離為d

所以

d%3D%5Cfrac%7B%5Cvert%20y_%7B1%7D%5E2%2B1%20%20%5Cvert%20%7D%7B%5Csqrt%7B%EF%BC%88y_%7B1%7D%5E2-1%20%EF%BC%89%5E2%2B4y_%7B1%7D%5E2%20%20%7D%20%7D%20%3D%5Cfrac%7B%5Cvert%20y_%7B1%7D%5E2%2B1%20%20%5Cvert%20%7D%7B%5Csqrt%7B%EF%BC%88y_%7B1%7D%5E2%2B1%20%EF%BC%89%5E2%20%7D%20%7D%3D1

所以直線A_%7B2%7D%20A_%7B3%7D%20%5Codot%20M%E7%9B%B8%E5%88%87

由此觀之,如果用未知坐標(biāo)代替已知坐標(biāo),計算量和技巧就更深一層,要更加注意細節(jié)了


注意:

這題的三個點都在拋物線上,要仔細觀察直線的兩點是否在拋物線上。

②該直線方程需要推導(dǎo)(并不復(fù)雜)

③同構(gòu)時要找需要的關(guān)鍵直線坐標(biāo)

若有錯誤,歡迎在評論指導(dǎo)

若覺得有用的話,就點點贊吧!

(圓錐曲線)利用兩點式的變換來解決常見問題的評論 (共 條)

分享到微博請遵守國家法律
海淀区| 简阳市| 呼和浩特市| 东丽区| 青海省| 清镇市| 西城区| 建湖县| 河津市| 辉南县| 高台县| 文成县| 永春县| 通辽市| 宜兰市| 旺苍县| 京山县| 富宁县| 永平县| 娱乐| 清涧县| 绵阳市| 宝丰县| 建宁县| 孙吴县| 油尖旺区| 仪陇县| 怀远县| 万盛区| 长丰县| 林口县| 碌曲县| 迁西县| 易门县| 阜南县| 疏勒县| 万安县| 乌恰县| 贡山| 滨州市| 玛纳斯县|