国产精品天干天干,亚洲毛片在线,日韩gay小鲜肉啪啪18禁,女同Gay自慰喷水

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

[Calculus] Beltrami Identity

2021-11-28 14:58 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (鄭濤)

【Problem】

The Beltrami identity, named after the Italian mathematician Eugenio Beltrami (1835 - 1900), is a simplified and less general version of the Euler–Lagrange equation in the calculus of variations.

Show that the Euler-Lagrange equation

%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cleft(%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%20%5Cright)%20-%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20y%7D%20%3D%200

can be written as

%20%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cleft%5BL%20-%20%5Cdot%7By%7D%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%5Cright%5D%20-%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20t%7D%20%3D%200

Then show that if L does not explicitly depend on t, then

L%20-%20%5Cdot%7By%7D%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%20%3D%20C

where C is constant.

Hint:Use the shorthand %5Cfrac%7Bdy%7D%7Bdt%7D%20%3D%20%5Cdot%7By%7D and %5Cfrac%7Bd%5E2%20y%7D%7Bdt%5E2%7D%20%3D%20%5Cfrac%7Bd%5Cdot%7By%7D%7D%7Bdt%7D%20%3D%20%5Cddot%7By%7D%20.

【Solution】

Note that the total derivative

%20%5Cfrac%7BdL%7D%7Bdt%7D%20%3D%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20t%7D%20%2B%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20y%7D%20%5Cfrac%7Bdy%7D%7Bdt%7D%20%2B%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%20%5Cfrac%7Bd%20%5Cdot%7By%7D%7D%7Bdt%7D

can be expressed as

%5Cfrac%7BdL%7D%7Bdt%7D%20%3D%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20t%7D%20%2B%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20y%7D%20%5Cdot%7By%7D%20%2B%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%20%5Cddot%7By%7D%20

Also,

%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cleft%5B%5Cdot%7By%7D%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%5Cright%5D%20%3D%20%5Cdot%7By%7D%20%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cleft(%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%20%5Cright)%20%2B%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%20%5Cddot%7By%7D

Substituting the above two expressions into

%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cleft%5BL%20-%20%5Cdot%7By%7D%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%5Cright%5D%20-%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20t%7D%20%3D%200

gives

%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20t%7D%20%2B%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20y%7D%20%5Cdot%7By%7D%20%2B%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%20%5Cddot%7By%7D%20-%20%5Cleft%5B%5Cdot%7By%7D%20%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cleft(%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%20%5Cright)%20%2B%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%20%5Cddot%7By%7D%5Cright%5D%20-%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20t%7D%20%3D%200%20


Simplify this expression and factor out -%20%5Cdot%7By%7D:

%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20y%7D%20%5Cdot%7By%7D%20-%20%5Cdot%7By%7D%20%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cleft(%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%20%5Cright)%20%3D%200%20

-%20%5Cdot%7By%7D%20%5Cleft%5B%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cleft(%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%20%5Cright)-%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20y%7D%20%5Cright%5D%20%3D%200

Divide away -%20%5Cdot%7By%7D:

%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cleft(%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%20%5Cright)-%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20y%7D%20%3D%200%20

Therefore,

%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cleft%5BL%20-%20%5Cdot%7By%7D%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%5Cright%5D%20-%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20t%7D%20%3D%200

is equivalent to the Euler-Lagrange equation.

If L%20 does not explicitly depend on t, then %5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20t%7D%20%3D%200 and%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cleft%5BL%20-%20%5Cdot%7By%7D%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%5Cright%5D-%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20t%7D%20%3D%200%20

becomes

%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cleft%5BL%20-%20%5Cdot%7By%7D%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%5Cright%5D%20%3D%200

So by integration

L%20-%20%5Cdot%7By%7D%20%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20%5Cdot%7By%7D%7D%20%3D%20C

where C%20 is constant.


[Calculus] Beltrami Identity的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國家法律
永胜县| 胶州市| 江西省| 涞源县| 南皮县| 安国市| 威宁| 华宁县| 中牟县| 那坡县| 新野县| 公主岭市| 马边| 武隆县| 睢宁县| 岫岩| 岳阳市| 宣城市| 晋州市| 垫江县| 囊谦县| 郯城县| 玉屏| 西宁市| 昌乐县| 定州市| 廊坊市| 博野县| 河曲县| 台山市| 舟曲县| 长兴县| 玉溪市| 上思县| 融水| 栾川县| 纳雍县| 寿宁县| 涿鹿县| 拉萨市| 柳河县|