国产精品天干天干,亚洲毛片在线,日韩gay小鲜肉啪啪18禁,女同Gay自慰喷水

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

[Algebra] Product of Two Negative Numbers

2021-07-16 13:22 作者:AoiSTZ23  | 我要投稿

?By: Tao Steven Zheng (鄭濤)

【Problem】

Prove why the product of two negative real numbers is a positive real number.

【Solution】

Let a%2Cb? be two positive real numbers; subsequently, -a and -b?are their respective additive inverses.

A clever way to prove that (-a)(-b)%3Dab is to begin by considering the equation

x%3Dab%2B(-a)(b)%2B(-a)(-b)

and then use this equation to show that x%3Dab%20 and x%3D(-a)(-b).


First, factor out -a from the expression (-a)(b)%2B(-a)(-b):

x%3Dab%2B(-a)(b)%2B(-a)(-b)

x%3Dab%2B(-a)%5Bb%2B(-b)%5D

Since b%2B(-b)%3D0,

x%20%3D%20ab%20%2B%20(-a)(0)

Thus,

x%3Dab

Now, with the original equation, factor out b?from the expression ab%2B(-a)(b):

x%3Dab%2B(-a)(b)%2B(-a)(-b)

x%3Db%5Ba%2B(-a)%5D%2B(-a)(-b)

x%3Db(0)%2B(-a)(-b)

Thus,

x%3D(-a)(-b)

Since? x%3Dab%20 and x%3D(-a)(-b), we discover that?

(-a)(-b)%20%3D%20ab

Therefore, the product of two negative numbers is positive.




[Algebra] Product of Two Negative Numbers的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
桃江县| 多伦县| 西充县| 丰县| 广南县| 遵化市| 廊坊市| 吉木乃县| 丹阳市| 克什克腾旗| 娄烦县| 伽师县| 凤冈县| 天门市| 镇巴县| 永川市| 罗甸县| 惠水县| 建水县| 林甸县| 安多县| 凤庆县| 东海县| 文安县| 水城县| 观塘区| 连州市| 慈溪市| 乌审旗| 延川县| 舟山市| 柯坪县| 乳源| 纳雍县| 穆棱市| 亳州市| 化隆| 潮安县| 湘阴县| 越西县| 库车县|