国产精品天干天干,亚洲毛片在线,日韩gay小鲜肉啪啪18禁,女同Gay自慰喷水

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

PyTorch Tutorial 07 - Linear Regressi...

2023-02-15 21:08 作者:Mr-南喬  | 我要投稿

教程Python代碼如下:


# 1) Design model(input, output size, forward pass)

# 2) Construct loss and optimizer

# 3) Training loop 訓(xùn)練循環(huán)

#??- forward pass: compute prediction

#??- backward pass: gradients

#??- update weights

import torch

import torch.nn as nn

import numpy as np

# ModuleNotFoundError: No module named 'sklearn':需要注意報(bào)錯(cuò)的sklearn是scikit-learn縮寫(xiě),pip install scikit-learn

# 清華源:pip install scikit-learn -i https://pypi.tuna.tsinghua.edu.cn/simple

from sklearn import datasets

import matplotlib.pyplot as plt


# 0) prepare data

X_numpy, Y_numpy = datasets.make_regression(n_samples=100, n_features=1, noise=20, random_state=1)


X = torch.from_numpy(X_numpy.astype(np.float32))

Y = torch.from_numpy(Y_numpy.astype(np.float32))


#重塑張量

Y = Y.view(Y.shape[0],1)


n_samples,n_features = X.shape


# 1) model

input_size = n_features

output_size = 1


model = nn.Linear(input_size,output_size)


# 2) loss and optimizer

learning_rate = 0.01 #學(xué)習(xí)速率


criterion = nn.MSELoss() #均方誤差

optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) #優(yōu)化器


# 3) training loop

num_epochs = 100

for epoch in range(num_epochs):

??# forward pass

??y_predicted = model(X)

??loss = criterion(y_predicted,Y)


??# backward pass

??loss.backward()


??# update

??optimizer.step()

??optimizer.zero_grad() # 清空grad


??if(epoch+1) % 10 == 0:

????print(f'epoch: {epoch+1}, loss = {loss.item():.4f}')


#plot,Matplotlib下的函數(shù),plot函數(shù):繪圖

predicted = model(X).detach().numpy()

plt.plot(X_numpy, Y_numpy,'ro')

plt.plot(X_numpy, predicted, 'b')

plt.show()

PyTorch Tutorial 07 - Linear Regressi...的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
剑阁县| 甘洛县| 刚察县| 吉首市| 顺义区| 遵义市| 班戈县| 武威市| 嘉荫县| 德令哈市| 志丹县| 台中市| 岚皋县| 巴彦县| 门头沟区| 大邑县| 康保县| 漳州市| 吴川市| 新蔡县| 山西省| 濉溪县| 杭锦旗| 阆中市| 横山县| 霍城县| 双辽市| 万盛区| 固原市| 南涧| 余干县| 离岛区| 同仁县| 山阴县| 资兴市| 阿克| 观塘区| 溧水县| 肇源县| 任丘市| 武安市|