国产精品天干天干,亚洲毛片在线,日韩gay小鲜肉啪啪18禁,女同Gay自慰喷水

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

【眉山論道】“老三論”是復(fù)雜科學(xué)?這個說法其實有失偏頗

2022-07-16 08:40 作者:老頑童崔坤  | 我要投稿

運用數(shù)學(xué)歸納法證明:每個大于等于9的奇數(shù)都是3+兩個奇素數(shù)之和


崔坤


中國青島即墨,266200,E-mail:cwkzq@126.com


摘要:


數(shù)學(xué)家劉建亞在《哥德巴赫猜想與潘承洞》中說:“我們可以把這個問題反過來思考, 已知奇數(shù)N可以表成三個素數(shù)之和, 假如又能證明


這三個素數(shù)中有一個非常小,譬如說第一個素數(shù)可以總?cè)?, 那么我們也就證明了偶數(shù)的哥德巴赫猜想?!?,


直到2013年才有秘魯數(shù)學(xué)家哈羅德賀歐夫格特徹底證明了三素數(shù)定理。


關(guān)鍵詞:三素數(shù)定理,奇素數(shù),加法交換律結(jié)合律


中圖分類號:O156 文獻標識碼: A


Mathematical induction proves that every odd number greater than or equal to 9 is the sum of 3 + two odd prime numbers


abstract:Mathematician Liu Jianya said in "Goldbach Conjecture and Pan Chengdong": "We can think about this problem in


reverse. Knowing that the odd number N can be expressed as the sum of three prime numbers, if it can be proved that one of


the three prime numbers is very Small, for example, the first prime number can always be 3, then we have proved


Goldbach’s conjecture for even numbers.” It was not until 2013 that Peruvian mathematician Harold Hoofgert completely


proved the three prime number theorem.


keywords:Triple Prime Theorem, Odd Prime Numbers, Commutative Law of Addition, Associative Law


證明:


根據(jù)2013年秘魯數(shù)學(xué)家哈羅德·賀歐夫格特已經(jīng)徹底地證明了的三素數(shù)定理:


每個大于等于9的奇數(shù)都是三個奇素數(shù)之和,每個奇素數(shù)都可以重復(fù)使用。


它用下列公式表示:Q是每個≥9的奇數(shù),奇素數(shù):q1≥3,q2≥3,q3≥3,


則Q=q1+q2+q3 根據(jù)加法交換律結(jié)合律,不妨設(shè):q1≥q2≥q3≥3,


則Q-3=q1+q2+q3-3 顯見:有且僅有q3=3時,Q-3=q1+q2,否則,奇數(shù)9,11,13都是三素數(shù)定理的反例。


即每個大于等于6的偶數(shù)都是兩個奇素數(shù)之和


推論Q=3+q1+q2,即每個大于等于9的奇數(shù)都是3+兩個奇素數(shù)之和。


我們運用數(shù)學(xué)歸納法做如下證明:


給出首項為9,公差為2的等差數(shù)列:Qn=7+2n:{9,11,13,15,17,.....}


Q1= 9


Q2= 11


Q3= 13


Q4= 15

.......


Qn=7+2n=3+q1+q2,(其中奇素數(shù)q1≥q2≥3,奇數(shù)Qn≥9,n為正整數(shù))


數(shù)學(xué)歸納法:


第一步:當n=1時 ,Q1=9 時 ,Q1=9=3+q1+q2=3+3+3成立


第二步:假設(shè) :n=k時,Qk=3+qk1+qk2,奇素數(shù):qk1≥3,qk2≥3,成立。


第三步:當n=k+1時,Q(k+1)=Qk+2=3+qk1+qk2+2=5+qk1+qk2


此時Qk+2=Q(k+1)=5+qk1+qk2


即每個大于等于11的奇數(shù)都是5+兩個奇素數(shù)之和,從而每個大于等于6的偶數(shù)都是兩個奇素數(shù)之和。


而這個結(jié)論與“每個大于等于9的奇數(shù)都是3+兩個奇素數(shù)之和”是等價的


即:Qk+2=3+qk1+qk2+2=5+qk1+qk2=3+qk3+qk4,奇素數(shù):qk3≥3,qk4≥3


故:Qk+2=3+qk3+qk4,奇素數(shù):qk3≥3,qk4≥3


綜上所述,對于任意正整數(shù)n命題均成立,即:每個大于等于9的奇數(shù)都是3+兩個奇素數(shù)之和


同時,每個大于等于11的奇數(shù)Q=3+p1+p2=5+p3+p4,(p1,p2,p3,p4均為奇素數(shù))


結(jié)論:每個大于等于9的奇數(shù)都是3+兩個奇素數(shù)之和,Q=3+q1+q2,(奇素數(shù)q1≥q2≥3,奇數(shù)Q≥9)


參考文獻:


[1]Major Arcs for Goldbach's Theorem. Arxiv [Reference date 2013-12-18]


[2] Minor arcs for Goldbach's problem.Arxiv [Reference date 2013-12-18]

【眉山論道】“老三論”是復(fù)雜科學(xué)?這個說法其實有失偏頗的評論 (共 條)

分享到微博請遵守國家法律
苍山县| 南阳市| 湖口县| 玛多县| 遂川县| 莒南县| 隆化县| 扎赉特旗| 新邵县| 梅州市| 简阳市| 荥阳市| 遂昌县| 承德市| 莒南县| 子长县| 天峨县| 南通市| 平乡县| 乌兰浩特市| 布拖县| 庆云县| 江城| 忻城县| 浦城县| 科技| 阆中市| 南陵县| 盐池县| 德安县| 广水市| 罗城| 兴宁市| 炉霍县| 双鸭山市| 渭南市| 公主岭市| 锦屏县| 临西县| 台南县| 克山县|