国产精品天干天干,亚洲毛片在线,日韩gay小鲜肉啪啪18禁,女同Gay自慰喷水

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

KDD2023丨Recommendation論文合集

2023-07-21 16:35 作者:AMiner科技  | 我要投稿

ACM?SIGKDD(國(guó)際數(shù)據(jù)挖掘與知識(shí)發(fā)現(xiàn)大會(huì),簡(jiǎn)稱KDD)會(huì)議始于1989年,是數(shù)據(jù)挖掘領(lǐng)域歷史最悠久、規(guī)模最大的國(guó)際頂級(jí)學(xué)術(shù)會(huì)議,也是首個(gè)引入大數(shù)據(jù)、數(shù)據(jù)科學(xué)、預(yù)測(cè)分析、眾包等概念的會(huì)議,每年吸引了大量數(shù)據(jù)挖掘、機(jī)器學(xué)習(xí)、大數(shù)據(jù)和人工智能等領(lǐng)域的研究學(xué)者、從業(yè)人員參與。

AMiner通過(guò)AI技術(shù),對(duì) KDD2023 收錄的會(huì)議論文進(jìn)行了分類整理,今日分享的是Recommendation主題論文!(由于篇幅關(guān)系,本篇只展現(xiàn)部分論文,點(diǎn)擊閱讀原文可直達(dá)KDD頂會(huì)頁(yè)面查看所有論文)

1.Adaptive Graph Contrastive Learning for Recommendation

鏈接:https://www.aminer.cn/pub/6466fafbd68f896efaeb7633/

2.Tree based Progressive Regression Model for Watch-Time Prediction in Short-video Recommendation

鏈接:https://www.aminer.cn/pub/648000a9d68f896efaa123eb/

3.Multi-channel Integrated Recommendation with Exposure Constraints

鏈接:https://www.aminer.cn/pub/646c3ad0d68f896efa5ce60f/

4.ReLoop2: Building Self-Adaptive Recommendation Models via Responsive Error Compensation Loop

鏈接:https://www.aminer.cn/pub/648bde68d68f896efaf81bd3/

5.Hierarchical Invariant Learning for Domain Generalization Recommendation

鏈接:https://www.aminer.cn/pub/64af9a073fda6d7f065a6d92/

6.Debiasing Recommendation by Learning Identifiable Latent Confounders

鏈接:https://www.aminer.cn/pub/63e9aa5e90e50fcafd133661/

7.Meta Graph Learning for Long-tail Recommendation

鏈接:https://www.aminer.cn/pub/64af9a033fda6d7f065a6963/

8.PGLBox: Multi-GPU Graph Learning Framework for Web-Scale Recommendation

鏈接:https://www.aminer.cn/pub/64af9a043fda6d7f065a6a90/

9.Impatient Bandits: Optimizing Recommendations for the Long-Term Without Delay

鏈接:https://www.aminer.cn/pub/64af9a063fda6d7f065a6b9c/

10.Privacy Matters: Vertical Federated Linear Contextual Bandits for Privacy Protected Recommendation

鏈接:https://www.aminer.cn/pub/64af9a0a3fda6d7f065a702d/

11.Generative Flow Network for Listwise Recommendation

鏈接:https://www.aminer.cn/pub/64af99fc3fda6d7f065a6275/

12.A Sublinear Time Algorithm for Opinion Optimization in Directed Social Networks via Edge Recommendation

鏈接:https://www.aminer.cn/pub/64af99fc3fda6d7f065a62a4/

13.Hierarchical Projection Enhanced Multi-behavior Recommendation

鏈接:https://www.aminer.cn/pub/64af99fe3fda6d7f065a6424/

14.SAMD: An Industrial Framework for Heterogeneous Multi-Scenario Recommendation

鏈接:https://www.aminer.cn/pub/64af99fe3fda6d7f065a6481/

15.M5: Multi-Modal Multi-Interest Multi-Scenario Matching for Over-the-Top Recommendation

鏈接:https://www.aminer.cn/pub/64af9a033fda6d7f065a691f/

16.Modeling Dual Period-Varying Preferences for Takeaway Recommendation

鏈接:https://www.aminer.cn/pub/64af9a053fda6d7f065a6b8b/

17.Reconsidering Learning Objectives in Unbiased Recommendation: A Distribution Shift Perspective

鏈接:https://www.aminer.cn/pub/64af9a083fda6d7f065a6db2/

18.Who Should Be Given Incentives? Counterfactual Optimal Treatment Regimes Learning for Recommendation

鏈接:https://www.aminer.cn/pub/64af9a083fda6d7f065a6dd5/


如何使用ChatPaper讀文獻(xiàn)?

為了讓更多科研人更高效的獲取文獻(xiàn)知識(shí),AMiner基于GLM-130B大模型能力,開發(fā)了Chatpaper,幫助科研人快速提高檢索、閱讀論文效率,獲取最新領(lǐng)域研究動(dòng)態(tài),讓科研工作更加游刃有余。

ChatPaper是一款集檢索、閱讀、知識(shí)問(wèn)答于一體的對(duì)話式私有知識(shí)庫(kù),AMiner希望通過(guò)技術(shù)的力量,讓大家更加高效地獲取知識(shí)。

ChatPaper:https://www.aminer.cn/chat/g

KDD2023丨Recommendation論文合集的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
赣榆县| 金溪县| 新民市| 新乡县| 长子县| 垣曲县| 汾阳市| 山东| 土默特左旗| 龙川县| 广元市| 扶余县| 建平县| 高清| 洛南县| 灵武市| 济源市| 文成县| 故城县| 屯留县| 都兰县| 宁蒗| 辽中县| 望奎县| 隆子县| 赞皇县| 安乡县| 榆林市| 葵青区| 防城港市| 闵行区| 响水县| 昌平区| 邛崃市| 芦溪县| 镇安县| 阳泉市| 永胜县| 玉屏| 托克逊县| 涟水县|