国产精品天干天干,亚洲毛片在线,日韩gay小鲜肉啪啪18禁,女同Gay自慰喷水

歡迎光臨散文網 會員登陸 & 注冊

Reinforcement Learning_Code_Simplest Actor-Critic

2023-04-12 21:59 作者:別叫我小紅  | 我要投稿

Following results and code are the implementation of simplest actor-critic in Gymnasium's Cart Pole environment. More actor-critic alorithms will be added in the learning of OpenAi Sunning Up tutorial.


RESULTS:

The simplest actor-critic algorithm takes too many steps to converge, it may be caused by large variance in sampling. If a baseline is reduced when updating policy, which refers to the trick used in?A2C, this phenomenon may be alleviated.

Visualizations of (i) changes in score?and?value approximation loss, and (ii) animation results.

Fig. 1. Changes in score and value approximation loss.
Fig. 2. Animation result?which got?a score of 357 points.


CODE:

NetWork.py


QACAgent.py


train_and_test.py


The above code are mainly based on?Lesson 7 of the David Silver's lecture [1],?Chapter 10 of Shiyu Zhao's Mathematical Foundation of Reinforcement Learning [2], and?Chapter 10 of Hands-on Reinforcement Learning?[3].


Reference

[1] https://www.davidsilver.uk/teaching/

[2] https://github.com/MathFoundationRL/Book-Mathmatical-Foundation-of-Reinforcement-Learning

[3]?https://hrl.boyuai.com/


Reinforcement Learning_Code_Simplest Actor-Critic的評論 (共 條)

分享到微博請遵守國家法律
横山县| 咸丰县| 静宁县| 石屏县| 镇安县| 个旧市| 大竹县| 灵川县| 洪江市| 荆门市| 东平县| 南康市| 普格县| 禹州市| 灌云县| 万年县| 华容县| 泰州市| 黄山市| 东至县| 桐城市| 奉新县| 都昌县| 万安县| 万年县| 涪陵区| 汾阳市| 滦南县| 葵青区| 格尔木市| 门源| 称多县| 广安市| 睢宁县| 故城县| 甘谷县| 五华县| 昭苏县| 上高县| 安溪县| 崇文区|