国产精品天干天干,亚洲毛片在线,日韩gay小鲜肉啪啪18禁,女同Gay自慰喷水

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

[Geometry] Prismoidal Formula

2021-11-21 10:53 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (鄭濤)

【Problem】

A ''prismatoid'' is a polyhedron whose vertices all lie in one or the other of two parallel planes. The perpendicular distance between the two planes is called the ''height'' or ''altitude''. The faces that lie in the parallel planes are called the ''bases'' of the prismatoid. The ''midsection'' is the polygon formed by cutting the prismatoid by a plane parallel to the bases halfway between them.

The volume of a prismatoid is given by the “prismoidal formula”:

V%20%3D%20%5Cfrac%7Bh%7D%7B6%7D%5Cleft(A_T%20%2B%204A_M%20%2B%20A_B%20%5Cright)

where h is the height, A_T%20 is the area of the top base, A_M is the area of the midsection, and A_B is the area of the bottom base.

Use the prismoidal formula to determine the volume of the following solids:

(1) Cube
(2) Paraboloid
(3) Sphere
(4) Bicylinder

【Solution】

(1) Cube

The cube is a square prism. Let the length of each edge be d. The area of the top base, midsection and bottom base must all be the same; hence, %20A_T%20%3D%20A_M%20%3D%20A_B%20%3D%20d%5E2.


%5Cbegin%7Balign%7D%0AV%20%26%3D%20%5Cfrac%7Bd%7D%7B6%7D%5Cleft(d%5E2%20%2B%204%20%5Ctimes%20d%5E2%2B%20d%5E2%20%5Cright)%20%5C%5C%0AV%20%26%3D%20%5Cfrac%7Bd%7D%7B6%7D%20%5Ctimes%206d%5E2%20%5C%5C%0AV%20%26%3D%20d%5E3%0A%5Cend%7Balign%7D


(2) Paraboloid

Let h be the height of the paraboloid. The base of a paraboloid is a circle with radius r. The top of the paraboloid is a point with no area. The midsection is harder to determine. From

Volume of a Paraboloid it is found that the radius of a paraboloid as a function of height is

%20r(x)%20%3D%20%5Cfrac%7Br%7D%7B%5Csqrt%7Bh%7D%7D%20%5Csqrt%7Bx%7D

Thus at x%20%3D%20%5Cfrac%7Bh%7D%7B2%7D, the radius of the circle at the midsection is r_M%20%3D%20%5Cfrac%7Br%7D%7B%5Csqrt%7B2%7D%7D and the area of the midsection is %20A_M%20%3D%20%5Cpi%7B(r_M)%7D%5E2%20%3D%20%5Cfrac%7B%5Cpi%20r%5E2%7D%7B2%7D.

%5Cbegin%7Balign%7D%0AV%20%26%3D%20%5Cfrac%7Bh%7D%7B6%7D%5Cleft(0%20%2B%204%20%5Ctimes%20%5Cleft(%5Cfrac%7B%5Cpi%20r%5E2%7D%7B2%7D%5Cright)%2B%20%5Cpi%20r%5E2%20%5Cright)%20%5C%5C%0AV%20%26%3D%20%5Cfrac%7Bh%7D%7B6%7D%20%5Ctimes%203%5Cpi%20r%5E2%20%5C%5C%0AV%20%26%3D%20%5Cfrac%7B%5Cpi%20r%5E2%20h%7D%7B2%7D%20%5C%5C%0A%5Cend%7Balign%7D


(3) Sphere

Let r be the radius of the sphere. The the top base and bottom base of a sphere are points with no area; hence, A_T%20%3D%20A_B%20%3D%200. The midsection is a circle with area %5Cpi%20r%5E2.


%5Cbegin%7Balign%7D%0AV%20%26%3D%20%5Cfrac%7B2r%7D%7B6%7D%5Cleft(0%20%2B%204%20%5Ctimes%20%5Cpi%20r%5E2%2B%200%20%5Cright)%20%5C%5C%0AV%20%26%3D%20%5Cfrac%7B2r%7D%7B6%7D%5Ctimes%204%5Cpi%20r%5E2%20%5C%5C%0AV%20%26%3D%20%5Cfrac%7B4%5Cpi%20r%5E3%7D%7B3%7D%0A%5Cend%7Balign%7D



(4) Bicylinder

The the top and base of the bicylinder are points with no area; hence, %20A_T%20%3D%20A_B%20%3D%200. The midsection is a square with area d%5E2.

%5Cbegin%7Balign%7D%0AV%20%26%3D%20%5Cfrac%7Bd%7D%7B6%7D%5Cleft(0%20%2B%204%20%5Ctimes%20d%5E2%2B%200%20%5Cright)%20%5C%5C%0AV%20%26%3D%20%5Cfrac%7Bd%7D%7B6%7D%20%5Ctimes%204d%5E2%20%20%5C%5C%0AV%20%26%3D%20%5Cfrac%7B2d%5E3%7D%7B3%7D%0A%5Cend%7Balign%7D


[Geometry] Prismoidal Formula的評論 (共 條)

分享到微博請遵守國家法律
渭源县| 峨山| 政和县| 民县| 浮山县| 盐源县| 喀喇沁旗| 白山市| 运城市| 玉屏| 鄂伦春自治旗| 九江市| 洛南县| 恭城| 青海省| 桂阳县| 渝北区| 浠水县| 桑日县| 平凉市| 集安市| 萝北县| 湟中县| 巴中市| 盘锦市| 来宾市| 句容市| 株洲市| 德江县| 麻阳| 林周县| 沙河市| 祥云县| 额济纳旗| 阳高县| 当涂县| 淳安县| 遂宁市| 灌云县| 楚雄市| 鞍山市|