国产精品天干天干,亚洲毛片在线,日韩gay小鲜肉啪啪18禁,女同Gay自慰喷水

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

[Calculus] Euler-Mascheroni Constant

2021-11-02 21:20 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (鄭濤)

【Problem】

Part 1: Differentiate the gamma function

%5CGamma(n)%20%3D%20%5Cint%20_%7B%200%20%7D%5E%7B%20%5Cinfty%20%20%7D%7B%20%7B%20t%20%7D%5E%7B%20n-1%20%7D%7B%20e%20%7D%5E%7B%20-t%20%7D%20%7D%20dt

Part 2: The Euler-Mascheroni constant is defined

%20%5Clim_%7Bn%5Crightarrow%20%5Cinfty%7D%7B%5Cleft%5B%7B%20H%20%7D_%7B%20n%2B1%20%7D%20-%5Cln%7B(n)%7D%5Cright%5D%7D%20%3D%20%5Cgamma

Use the result in part 1 to show that %7B%5CGamma%7D%5E%7B'%7D%20(1)%20%3D%20-%5Cgamma.


【Solution】

Part 1
We begin with the integral definition of the Gamma function

%5Clim%20_%7B%20x%5Crightarrow%20%5Cinfty%20%20%7D%7B%20%5Cint%20_%7B%200%20%7D%5E%7B%20x%20%7D%7B%20%7B%20e%20%7D%5E%7B%20-t%20%7D%7B%20t%20%7D%5E%7B%20n-1%20%7D%20%7D%20dt%20%7D%20

To differentiate under the integral, use the Leibniz Rule.

%5Cfrac%7Bd%7D%7Bdx%7D%5Cint_%7Ba(x)%7D%5E%7Bb(x)%7D%20f(x%2Ct)dt%20%3D%20%5Cint_%7Ba(x)%7D%5E%7Bb(x)%7D%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20x%7D%20f(x%2Ct)%20dt%20%2B%20f%5Cbig(x%2Cb(x)%5Cbig)%5Ccdot%20b'(x)%20-%20f%5Cbig(x%2Ca(x)%5Cbig)%5Ccdot%20a'(x)

For this problem, replace x%20 with %20n%20.


%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20n%7D%20%3D%20%7Bt%7D%5E%7Bn-1%7D%7Be%7D%5E%7B-t%7D%20%5Cln%7B(t)%7D

Thus,

%5Cbegin%7Balign%7D%0A%5CGamma%20'(n%2Ct)%20%26%3D%20%5Clim%20_%7B%20x%5Crightarrow%20%5Cinfty%20%20%7D%7B%20%5Cleft%5B%5Cint%20_%7B%200%20%7D%5E%7B%20x%20%20%7D%7B%7Bt%7D%5E%7Bn-1%7D%5Cln(t)%7Be%7D%5E%7B-t%7D%7D%20dt%20%2B%20%5Cleft(%7B%20x%20%7D%5E%7B%20n-1%20%7D%7B%20e%20%7D%5E%7B-x%7D%5Cright)%20%5Ccdot%201%20-%200%20%5Ccdot%200%20%5Cright%5D%20%7D%20%20%5C%5C%0A%26%3D%20%5Clim%20_%7B%20x%5Crightarrow%20%5Cinfty%20%20%7D%7B%20%5Cleft%5B%5Cint%20_%7B%200%20%7D%5E%7B%20x%20%20%7D%7B%7Bt%7D%5E%7Bn-1%7D%5Cln(t)%7Be%7D%5E%7B-t%7D%7D%20dt%20%2B%20%7B%20x%20%7D%5E%7B%20n-1%20%7D%7B%20e%20%7D%5E%7B-x%7D%5Cright%5D%20%7D%20%5C%5C%0A%26%3D%20%5Cint%20_%7B%200%20%7D%5E%7B%20%5Cinfty%20%7D%7B%20%7B%20e%20%7D%5E%7B%20-t%20%7D%7B%20t%20%7D%5E%7B%20n-1%20%7D%20%5Cln%5Cleft(t%5Cright)%7D%20dt%20%5C%5C%0A%5Cend%7Balign%7D

Part 2
To evaluate %7B%5CGamma%7D%5E%7B'%7D%20(1), we set n%3D1; thus,

%5Cint%20_%7B%200%20%7D%5E%7B%20%5Cinfty%20%7D%7B%20%7B%20e%20%7D%5E%7B%20-t%20%7D%5Cln%5Cleft(t%5Cright)%7D%20dt%20

We replace %20%7Be%7D%5E%7B-t%7D with %5Clim%20_%7B%20n%5Crightarrow%20%5Cinfty%20%20%7D%7B%20%5Cleft(1-%5Cfrac%7Bt%7D%7Bn%7D%20%5Cright)%5E%7Bn%7D%20%7D.

Let s%20%3D%201%20-%20%5Cfrac%7Bt%7D%7Bn%7D%20 and -nds%20%3D%20dt%20, we get

%20%5Cbegin%7Balign%7D%0A%5Clim%20_%7B%20n%5Crightarrow%20%5Cinfty%20%20%7D%7B%20%5Cleft%5B%20%5Cint%20_%7B%201%7D%5E%7B%200%7D%7B%20%7B%20s%20%7D%5E%7B%20n%20%7D%20%7D%20%5Cleft%5B%5Cln(n)%2B%5Cln(1-s)%20%5Cright%5D%20(-n)ds%20%5Cright%5D%20%20%7D%20%20%5C%5C%0A%20%26%3D%20%5Clim%20_%7B%20n%5Crightarrow%20%5Cinfty%20%20%7D%7B%20%5Cleft%5B%20n%5Cln%7B(n)%7D%5Cint%20_%7B%200%20%7D%5E%7B%201%20%7D%7B%20%7B%20s%20%7D%5E%7B%20n%20%7D%20%7D%20ds%2B%5Cint%20_%7B%200%20%7D%5E%7B%201%20%7D%7B%20%7B%20s%20%7D%5E%7B%20n%20%7D%20%7D%20%5Cln(1-s)ds%20%5Cright%5D%20%20%7D%20%20%5C%5C%0A%20%26%3D%5Clim%20_%7B%20n%5Crightarrow%20%5Cinfty%20%20%7D%7B%20%5Cleft%5B%20%5Cfrac%20%7B%20n%20%7D%7B%20n%2B1%20%7D%20%5Cln%7B(n)%7D%20%2B%5Cfrac%20%7B%20-1%20%7D%7B%20n%2B1%20%7D%20%5Cint%20_%7B%200%20%7D%5E%7B%201%20%7D%7B%20%5Cfrac%20%7B%20%7B%20s%20%7D%5E%7B%20n%2B1%20%7D-1%20%7D%7B%20s-1%20%7D%20%20%7D%20ds%20%5Cright%5D%20%20%7D%20%20%20%5C%5C%0A%20%26%3D%5Clim%20_%7B%20n%5Crightarrow%20%5Cinfty%20%20%7D%7B%5Cfrac%20%7B%20n%20%7D%7B%20n%2B1%20%7D%20%5Cleft%5B%5Cln%7B(n)%7D-%7B%20H%20%7D_%7B%20n%2B1%20%7D%20%5Cright%5D%7D%20%5C%5C%0A%5Cend%7Balign%7D%20


Since the Euler-Mascheroni constant is defined %5Clim_%7Bn%5Crightarrow%20%5Cinfty%7D%7B%5Cleft%5B%7B%20H%20%7D_%7B%20n%2B1%20%7D%20-%5Cln%7B(n)%7D%20%5Cright%5D%7D%20,

%20%7B%5CGamma%7D%5E%7B'%7D%20(1)%20%3D%20-%5Cgamma%20

The numerical value of the Euler-Mascheroni constant is roughly 0.577216.


[Calculus] Euler-Mascheroni Constant的評論 (共 條)

分享到微博請遵守國家法律
通州区| 天等县| 东方市| 广饶县| 蒲城县| 浦城县| 黑龙江省| 鄢陵县| 苏尼特左旗| 兰溪市| 莱芜市| 鄢陵县| 高要市| 上饶县| 普兰店市| 迁安市| 岳池县| 衡山县| 诸暨市| 盘锦市| 奎屯市| 荔浦县| 手游| 拉萨市| 内乡县| 大城县| 中山市| 兴和县| 城口县| 石楼县| 苍梧县| 广宗县| 始兴县| 江孜县| 泰州市| 丽江市| 芮城县| 滨海县| 乐安县| 共和县| 怀集县|