国产精品天干天干,亚洲毛片在线,日韩gay小鲜肉啪啪18禁,女同Gay自慰喷水

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

Differential Geometry Notes- Geodesics

2023-04-23 23:24 作者:iLune-  | 我要投稿

最近在學(xué)?Do Carmo 的Differential Geometry 和 Carroll 的 Spacetime and Geometry(雖然后者是基于manifold講的,但是學(xué)校教的還是古典微分幾何),記錄一下學(xué)習(xí)過(guò)程 ovo


1. Definition of geodesics

A curve %5Cgamma on a surface is said to be a geodesic if the geodesic curvature %5Ckappa_g%3D0??at every point of %5Cgamma. Thus, a geodesic curves only because of the curving of the surface – the extent of internal curving is zero. Here,?%5Ckappa_g%20%3Ddet(n%2C%5Cgamma'%2C%5Cgamma'')%3D0.

Free particles move along paths of “shortest possible distance,” or geodesics. In other words, particles try their best to move on straight lines, but in a curved spacetime there might not be any straight lines.

Light is always travelling along geodesics (null geodesics, with?-dt%5E2%2Ba%5E2(t)(dx%5E2%2Bdy%5E2%2Bdz%5E2)%3D0?)


2. Velocity and accleration vectors

Suppose there exists a diffeomorphism map %7BR%7D%20(u%2C%20v)%20%3D%20(x%20(u%2C%20v)%2C%20y%0A(u%2C%20v)%2C%20z%20(u%2C%20v)) for a regular surface S, and a regular curve %5Cgamma%20(t)%20%3DR%20(u%20(t)%2C%20v%20(t))?that on S , then consider the tangent vector(or velocity vector) is given by:

? ? ? ? ? ? ? ? ? ? ? ? ? ?T%3D%7BR%7D_u%20u'%0A%20%20%2B%7BR%7D_v%20v'

then the accleration vector is given by:

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?%5Cfrac%7Bd%5E2%20%7BR%7D%7D%7Bd%20t%5E2%7D%20%3D%20%5Cfrac%7Bd%7D%7Bd%20t%7D%20%5Cleft(%20%5Cfrac%7B%5Cpartial%0A%20%20%7BR%7D%7D%7B%5Cpartial%20u%7D%20%20%5Cfrac%7Bd%20u%7D%7Bd%20t%7D%20%5Cright)%20%2B%20%5Cfrac%7Bd%7D%7Bd%20t%7D%20%5Cleft(%0A%20%20%5Cfrac%7B%5Cpartial%20%7BR%7D%7D%7B%5Cpartial%20v%7D%20%20%5Cfrac%7Bd%20v%7D%7Bd%20t%7D%20%5Cright)

also by chain rule?we have:

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ??%5Cfrac%7Bd%7D%7Bd%20t%7D%20%5Cfrac%7B%5Cpartial%20%7BR%7D%7D%7B%5Cpartial%20v%7D%3D%5Cfrac%7B%5Cpartial%5E2%0A%20%20%20%7BR%7D%7D%7B%5Cpartial%20u%5E2%7D%20%5Cfrac%7Bd%20u%7D%7Bd%20t%7D%20%2B%20%5Cfrac%7B%5Cpartial%5E2%0A%20%20%20%7BR%7D%7D%7B%5Cpartial%20u%20%5Cpartial%20v%20%7D%20%5Cfrac%7Bd%20v%7D%7Bd%20t%7D

and?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ??%5Cfrac%7Bd%7D%7Bd%20t%7D%20%5Cfrac%7B%5Cpartial%20%7BR%7D%7D%7B%5Cpartial%20u%7D%20%3D%20%5Cfrac%7B%5Cpartial%5E2%0A%20%20%20%7BR%7D%7D%7B%5Cpartial%20u%5E2%7D%20%5Cfrac%7Bd%20u%7D%7Bd%20t%7D%20%2B%20%5Cfrac%7B%5Cpartial%5E2%0A%20%20%20%7BR%7D%7D%7B%5Cpartial%20u%20%5Cpartial%20v%20%7D%20%5Cfrac%7Bd%20v%7D%7Bd%20t%7D

therefore,??the?accleration vector by chain rule above is exactly in the form:

%5Cfrac%7Bd%5E2%20%7BR%7D%7D%7Bd%20t%5E2%7D%20%3D%20%5Cleft(%20%5Cfrac%7B%5Cpartial%5E2%0A%20%20%20%7BR%7D%7D%7B%5Cpartial%20u%5E2%7D%20%5Cfrac%7Bd%20u%7D%7Bd%20t%7D%20%2B%20%5Cfrac%7B%5Cpartial%5E2%0A%20%20%20%7BR%7D%7D%7B%5Cpartial%20u%20%5Cpartial%20v%20%7D%20%5Cfrac%7Bd%20v%7D%7Bd%20t%7D%20%5Cright)%20%5Cfrac%7Bd%20u%7D%7Bd%0A%20%20%20t%7D%20%2B%20%5Cfrac%7B%5Cpartial%20%7BR%7D%7D%7B%5Cpartial%20u%7D%20%5Cfrac%7Bd%5E2%20u%7D%7Bd%20t%5E2%7D%20%2B%20%5Cleft(%0A%20%20%20%5Cfrac%7B%5Cpartial%5E2%20%7BR%7D%7D%7B%5Cpartial%20u%20%5Cpartial%20v%20%7D%20%5Cfrac%7Bd%20u%7D%7Bd%20t%7D%20%2B%0A%20%20%20%5Cfrac%7B%5Cpartial%5E2%20%7BR%7D%7D%7B%7B%5Cpartial%20v%5E2%7D%20%7D%20%5Cfrac%7Bd%20v%7D%7Bd%20t%7D%20%5Cright)%0A%20%20%20%5Cfrac%7Bd%20v%7D%7Bd%20t%7D%20%2B%20%5Cfrac%7B%5Cpartial%20%7BR%7D%7D%7B%5Cpartial%20v%7D%20%5Cfrac%7Bd%5E2%20v%7D%7Bd%0A%20%20%20t%5E2%7D

%20%3D%20%5Cfrac%7B%5Cpartial%5E2%20%7BR%7D%7D%7B%5Cpartial%0A%20%20%20u%5E2%7D%20%5Cleft(%20%5Cfrac%7Bd%20u%7D%7Bd%20t%7D%20%5Cright)%5E2%20%2B%20%5Cfrac%7B%5Cpartial%5E2%0A%20%20%20%7BR%7D%7D%7B%5Cpartial%20u%20%5Cpartial%20v%20%7D%20%5Cfrac%7Bd%20v%7D%7Bd%20t%7D%20%5Cfrac%7Bd%20u%7D%7Bd%20t%7D%20%2B%0A%20%20%20%5Cfrac%7B%5Cpartial%20%7BR%7D%7D%7B%5Cpartial%20u%7D%20%5Cfrac%7Bd%5E2%20u%7D%7Bd%20t%5E2%7D%20%2B%0A%20%20%20%5Cfrac%7B%5Cpartial%5E2%20%7BR%7D%7D%7B%5Cpartial%20u%20%5Cpartial%20v%20%7D%20%5Cfrac%7Bd%20u%7D%7Bd%20t%7D%0A%20%20%20%5Cfrac%7Bd%20v%7D%7Bd%20t%7D%20%2B%20%5Cfrac%7B%5Cpartial%5E2%20%7BR%7D%7D%7B%7B%5Cpartial%20v%5E2%7D%20%7D%20%5Cleft(%0A%20%20%20%5Cfrac%7Bd%20v%7D%7Bd%20t%7D%20%5Cright)%5E2%20%2B%20%5Cfrac%7B%5Cpartial%20%7BR%7D%7D%7B%5Cpartial%20v%7D%0A%20%20%20%5Cfrac%7Bd%5E2%20v%7D%7Bd%20t%5E2%7D

%3D%20%5Cfrac%7B%5Cpartial%5E2%20%7BR%7D%7D%7B%5Cpartial%20u%5E2%7D%20%5Cleft(%20%5Cfrac%7Bd%20u%7D%7Bd%20t%7D%0A%20%20%20%5Cright)%5E2%20%2B%20%5Cfrac%7B%5Cpartial%5E2%20%7BR%7D%7D%7B%7B%5Cpartial%20v%5E2%7D%20%7D%20%5Cleft(%20%5Cfrac%7Bd%0A%20%20%20v%7D%7Bd%20t%7D%20%5Cright)%5E2%20%2B%202%20%5Cfrac%7B%5Cpartial%5E2%20%7BR%7D%7D%7B%5Cpartial%20u%20%5Cpartial%20v%0A%20%20%20%7D%20%5Cfrac%7Bd%20v%7D%7Bd%20t%7D%20%5Cfrac%7Bd%20u%7D%7Bd%20t%7D%20%2B%20%5Cfrac%7B%5Cpartial%20%7BR%7D%7D%7B%5Cpartial%0A%20%20%20u%7D%20%5Cfrac%7Bd%5E2%20u%7D%7Bd%20t%5E2%7D%20%2B%20%5Cfrac%7B%5Cpartial%20%7BR%7D%7D%7B%5Cpartial%20v%7D%20%5Cfrac%7Bd%5E2%0A%20%20%20v%7D%7Bd%20t%5E2%7D


The formular above is very complicated, therefore we apply?Einstein notation to simplify.Here, donate??u%5E1%20%3D%20u%2C%20u%5E2%20%3D%20v, obtain:

? ? ? ? ? ? ? ? ? ? ? ? ? ?%5Cfrac%7Bd%5E2%20%7BR%7D%7D%7Bd%20t%5E2%7D%20%3D%20%5Cfrac%7Bd%5E2%20u%5Ei%7D%7Bd%20t%5E2%7D%20%5Cfrac%7B%5Cpartial%0A%20%20%7BR%7D%7D%7B%5Cpartial%20u%5Ei%7D%20%2B%20%5Cfrac%7Bd%20u%5Ei%7D%7Bd%20t%7D%20%20%5Cfrac%7Bd%20u%5Ej%7D%7Bd%20t%7D%0A%20%20%5Cfrac%7B%5Cpartial%5E2%20%7BR%7D%7D%7B%5Cpartial%20u%5Ei%20%5Cpartial%20u%5Ej%7D

the first term???%5Cfrac%7B%5Cpartial%0A%7BR%7D%7D%7B%5Cpartial%20u%5Ei%7D?indicates the linear combination of natural basis?R_u%20?and?R_v?in tangential space?T_p(S).Then we consider the second term?%5Cfrac%7B%5Cpartial%5E2%20%7BR%7D%7D%7B%5Cpartial%20u%5Ei%0A%5Cpartial%20u%5Ej%7D.

Actually, the form of?%5Cfrac%7B%5Cpartial%5E2%20%7BR%7D%7D%7B%5Cpartial%20u%5Ei%0A%5Cpartial%20u%5Ej%7D?indicates the change of basis along the trajectory?%5Cgamma(t). To express this change in canonical basis?%5C%7BR_u%2CR_v%2Cn%5C%7D, we have the following in?Einstein notation :

? ? ? ? ? ? ? ??%5Cfrac%7B%5Cpartial%5E2%20%7BR%7D%7D%7B%5Cpartial%20u%5Ei%20%5Cpartial%20u%5Ej%7D%20%3D%20%5CGamma%5E1_%7Bi%20j%7D%0A%20%20%20%5Cfrac%7B%5Cpartial%20%7BR%7D%7D%7B%5Cpartial%20u%5E1%7D%20%2B%20%5CGamma%5E2_%7Bij%7D%20%5Cfrac%7B%5Cpartial%0A%20%20%20%7BR%7D%7D%7B%5Cpartial%20u%5E2%7D%20%2B%20L_%7Bi%20j%7D%20%5Chat%7B%7Bn%7D%7D%20%3D%20%5CGamma%5Ek_%7Bi%20j%7D%0A%20%20%20%5Cfrac%7B%5Cpartial%20%7BR%7D%7D%7B%5Cpartial%20u%5Ek%7D%20%2B%20L_%7Bij%7D%20%5Chat%7B%7Bn%7D%7D


Here, since there are 4 directions for change and each direction has 2 basis,

thus there are 8 different?%5CGamma%5Ek_%7Bi%20j%7D.The?%5CGamma%5Ek_%7Bi%20j%7D?is called?Christoffel symbol,?and the?L_%7Bij%7D?for the normal component is the second fundamental form of the surface.(Revision for the second fundamental form:?L_%7Bij%7D%3D%5Clangle%20R_%7Bij%7D%2Cn%20%5Crangle%3D-%5Clangle%20R_%7Bi%7D%2Cn_%7Bj%7D%20%5Crangle)

Fig.1 Linear combination of tangential and normal
component of change of basis


Christoffel symbols describe how the direction of basis deviates from the straight line. The Christoffel symbols however, indeed describe the chage of grid of the coordinate on the surface.


3.Calculation of?Christoffel symbols

3.1. Review of the first fundamental form

First, let's review the first fundamental form of regular surfaces. The 2 tangential vectors at the point?p?on the surface are?R_u(p)?and?R_v(p), and a trajectory???%5Cgamma%20(t)%20%3DR%20(u%20(t)%2C%20v%20(t)).Also review the tangent vector of the trajectory at?p?is?T%3D%7BR%7D_u%20u'%0A%20%20%2B%7BR%7D_v%20v'.

the first fundamental form is the self inner product of the tangent vector, that is:

I(T)%3D%5Clangle%20T%2CT%5Crangle%3D%5Clangle%20%7BR%7D_u%20u'%0A%20%20%2B%7BR%7D_v%20v'%2C%7BR%7D_u%20u'%0A%20%20%2B%7BR%7D_v%20v'%5Crangle%3D%7BR%7D_u%5E2%20(u')%5E2%2B2R_uR_vu'v'%2BR_%7Bv%7D%5E2(v')%5E2%3DE%20(u')%5E2%2B2Fu'v'%2BG(v')%5E2


In tensor form, the first fundamental form is given by?g_%7Bij%7D, which is actually the metric tensor of the surface. In??%5Cmathbb%7BR%5E3%7D, the metric tensor is a?2%20%5Ctimes2? symmetric matrix, with:

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?g%3D%5Cbegin%7Bmatrix%7D%0AE%26%20F%20%5C%5C%0AF%26%20G%20%5C%5C%0A%5Cend%7Bmatrix%7D

its inverse, in?Einstein notation, is expressed as?g%5E%7Bjk%7D, therefore?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?g_%7Bik%7D%5Ccdot%20g%5E%7Bkj%7D%3D%5Cdelta_%7Bj%7D%5Ei%3D%0A%5Cbegin%7Barray%7D%7Blr%7D%0A%20%20%20%20%20%20%20%20%20%20%20%20%201%2Ci%3Dj%20%26%20%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%20%20%0A%20%20%20%20%20%20%20%20%20%20%20%20%200%20%2Ci%5Cneq%20j%26%20%20%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cend%7Barray%7D%0A

by calculation of inverse matrix, it is trivial to obtain:

? ? ? ? ? ? ? ? ? ? ? ??g%5E%7B22%7D%3D%5Cfrac%7Bg_%7B11%7D%7D%7Bdet(g)%7D%2Cg%5E%7B11%7D%3D%5Cfrac%7Bg_%7B22%7D%7D%7Bdet(g)%7D%2Cg%5E%7B12%7D%3Dg%5E%7B21%7D%3D-%5Cfrac%7Bg_%7B12%7D%7D%7Bdet(g)%7D

3.2. Calculate Christoffel symbols

Remind that the acceleration vector is:

? ? ? ? ? ? ? ?%5Cfrac%7B%5Cpartial%5E2%20%7BR%7D%7D%7B%5Cpartial%20u%5Ei%20%5Cpartial%20u%5Ej%7D%20%3D%20%5CGamma%5E1_%7Bi%20j%7D%0A%20%20%20%5Cfrac%7B%5Cpartial%20%7BR%7D%7D%7B%5Cpartial%20u%5E1%7D%20%2B%20%5CGamma%5E2_%7Bij%7D%20%5Cfrac%7B%5Cpartial%0A%20%20%20%7BR%7D%7D%7B%5Cpartial%20u%5E2%7D%20%2B%20L_%7Bi%20j%7D%20%5Chat%7B%7Bn%7D%7D%20%3D%20%5CGamma%5Ek_%7Bi%20j%7D%0A%20%20%20%5Cfrac%7B%5Cpartial%20%7BR%7D%7D%7B%5Cpartial%20u%5Ek%7D%20%2B%20L_%7Bij%7D%20%5Chat%7B%7Bn%7D%7D

and noticing the geometric relationship, the normal vector?n?is perpendicular to the tangent space?span%5C%7BR_u%2CR_v%5C%7D, therefore we can calculate the?Christoffel symbols by doing inner product, that is:

? ? ? ? ? ? ? ? ???%5Cfrac%7B%5Cpartial%5E2%20%7BR%7D%7D%7B%5Cpartial%20u%5Ei%20%5Cpartial%20u%5Ej%7D%20%5Ccdot%0A%20%20%20%5Cfrac%7B%5Cpartial%20%7BR%7D%7D%7B%5Cpartial%20u%5El%7D%20%3D%20%5CGamma%5E1_%7Bi%2Cj%7D%20%5Cleft(%0A%20%20%20%5Cfrac%7B%5Cpartial%20%7BR%7D%7D%7B%5Cpartial%20u%5E1%7D%20%5Cright)%5E2%20%2B%20%5CGamma%5E2_%7Bi%20j%7D%20%20(%5Cfrac%7B%5Cpartial%20%7BR%7D%7D%7B%5Cpartial%20u%5E2%7D%20)%5E2%20%3D%20%5CGamma%5Ek_%7Bi%20j%7D%20%7Bg%7D_%7B%7Bkl%7D%7D%0A

therefore by mutipulying the inverse, we have:

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?%5Cfrac%7B%5Cpartial%5E2%20%7BR%7D%7D%7B%5Cpartial%20u%5Ei%20%5Cpartial%20u%5Ej%7D%20%5Ccdot%0A%20%20%5Cfrac%7B%5Cpartial%20%7BR%7D%7D%7B%5Cpartial%20u%5E%7B%7Bl%7D%7D%7D%20%5Ccdot%20%7Bg%7D%0A%20%20%5E%7B%7Bl%7Dk%7D%20%3D%20%5CGamma%5Ek_%7Bij%7D

or

? ? ? ? ? ? ? ? ? ?? ? ??%5CGamma_%7Bij%7D%5Ek%3D(R_%7Bij%7D%5Ccdot%20R_%7Bl%7D%20)g%5E%7Blk%7D%3D%5Cfrac%7B1%7D%7B2%7D(%5Cfrac%7B%5Cpartial%20g_%7Bil%7D%7D%7B%5Cpartial%20u%5Ej%7D%2B%5Cfrac%7B%5Cpartial%20g_%7Bjl%7D%7D%7B%5Cpartial%20u%5Ej%7D-%5Cfrac%7B%5Cpartial%20g_%7Bij%7D%7D%7B%5Cpartial%20u%5El%7D)g%5E%7Blk%7D

In detail, in an orthonormal coordinate,where?F%3D0, we have the following:

%5CGamma%5E1_%7B1%201%7D%20%3D%20%5Cfrac%7BE_u%7D%7B2%20E%7D%2C%20%5CGamma%5E1_%7B1%202%7D%20%3D%20%5CGamma%5E1_%7B2%201%7D%20%3D%0A%20%20%20%5Cfrac%7BE_v%7D%7B2%20E%7D%2C%20%5CGamma%5E1_%7B2%202%7D%20%3D%20%5Cfrac%7B-%20G_u%7D%7B2%20E%7D%5C%5C%20%0A%5CGamma%5E2_%7B1%201%7D%20%3D%20%5Cfrac%7B-%20E_v%7D%7B2%20G%7D%2C%20%5CGamma%5E2_%7B1%202%7D%20%3D%20%5CGamma%5E2_%7B2%201%7D%20%3D%0A%20%20%20%5Cfrac%7BG_u%7D%7B2%20G%7D%2C%20%5CGamma%5E2_%7B2%202%7D%20%3D%20%5Cfrac%7BG_v%7D%7B2%20G%7D%20

4.Geodesics

With the arrangement above, we have the accleration vector below:


? ? ? ? ? ? ??%5Cfrac%7Bd%5E2%20%7BR%7D%7D%7Bd%20t%5E2%7D%20%3D%20%5Cleft(%20%5Cfrac%7Bd%5E2%20u%5Ek%7D%7Bd%20t%5E2%7D%20%2B%0A%20%20%20%5CGamma%5Ek_%7Bi%2C%20j%7D%20%20%5Cfrac%7Bd%20u%5Ei%7D%7Bd%20t%7D%20%20%5Cfrac%7Bd%20u%5Ej%7D%7Bd%20t%7D%20%5Cright)%0A%20%20%20%5Cfrac%7B%5Cpartial%20%7BR%7D%7D%7B%5Cpartial%20u%5Ek%7D%20%2B%20%5Cfrac%7Bd%20u%5Ei%7D%7Bd%20t%7D%20%20%5Cfrac%7Bd%0A%20%20%20u%5Ej%7D%7Bd%20t%7D%20L_%7Bi%2C%20j%7D%20%5Chat%7B%7Bn%7D%7D

By the definition of geodesics,?det(n%2C%5Cgamma'%2C%5Cgamma'')%3D0,and because?%5Chat%20n%3D%5Cfrac%7BR_u%20%5Ctimes%20R_v%7D%7B%5Cvert%20R_u%20%5Ctimes%20R_v%20%5Cvert%20%7D%0A?

we have:??

???%5Cleft%20(%5Cleft%20(%5Cleft(%20%5Cfrac%7Bd%5E2%20u%5Ek%7D%7Bd%20t%5E2%7D%20%2B%0A%20%20%20%5CGamma%5Ek_%7Bi%2C%20j%7D%20%20%5Cfrac%7Bd%20u%5Ei%7D%7Bd%20t%7D%20%20%5Cfrac%7Bd%20u%5Ej%7D%7Bd%20t%7D%20%5Cright)%0A%20%20%20%5Cfrac%7B%5Cpartial%20%7BR%7D%7D%7B%5Cpartial%20u%5Ek%7D%20%2B%20%5Cfrac%7Bd%20u%5Ei%7D%7Bd%20t%7D%20%20%5Cfrac%7Bd%0A%20%20%20u%5Ej%7D%7Bd%20t%7D%20L_%7Bi%2C%20j%7D%20%5Chat%7B%7Bn%7D%7D%20%5Cright)%5Ctimes%20%5Cleft(%5Cfrac%7B%5Cpartial%0A%20%20%7BR%7D%7D%7B%5Cpartial%20u%5Ek%7D%20%20%5Cfrac%7Bd%20u%5Ek%7D%7Bd%20t%7D%20%5Cright)%5Cright)%5Ccdot%20%20%5Chat%7Bn%7D%3D0

because?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ???%5Cleft(%5Cfrac%7Bd%20u%5Ej%7D%7Bd%20t%7D%20L_%7Bi%2C%20j%7D%20%5Chat%7B%7Bn%7D%7D%20%5Ctimes%20%5Cfrac%7B%5Cpartial%0A%20%20%7BR%7D%7D%7B%5Cpartial%20u%5Ek%7D%20%20%5Cfrac%7Bd%20u%5Ek%7D%7Bd%20t%7D%20%5Cright)%5Ccdot%20%20%5Chat%7Bn%7D%3D0%0A


therefore?%5Ckappa_g%3D0?if and only if

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?%5Cfrac%7Bd%5E2%20u%5Ek%7D%7Bd%20t%5E2%7D%20%2B%0A%20%20%20%5CGamma%5Ek_%7Bi%2C%20j%7D%20%20%5Cfrac%7Bd%20u%5Ei%7D%7Bd%20t%7D%20%20%5Cfrac%7Bd%20u%5Ej%7D%7Bd%20t%7D%0A%20%20%20%20%3D0

which is the differential form of geodesics.

Expand Einstein notation, we have the following :

u''%20%2B%20%5CGamma%5E1_%7B11%7D%20(u')%5E2%20%2B%202%20%5CGamma%5E1_%7B1%202%7D%20u'%20v'%20%2B%20%5CGamma%5E1_%7B2%202%7D%20(v')%5E2%0A%20%20%20%3D%200%20%5C%5C%0A%20v''%20%2B%20%5CGamma%5E2_%7B11%7D%20(u')%5E2%20%2B%202%20%5CGamma%5E2_%7B12%7D%20u'%20v'%20%2B%20%5CGamma%5E2_%7B2%202%7D%20(v')%5E2%0A%20%20%20%3D%200%20

With orthonormal basis, the geodesics behaves:

u''%20%2B%20%5Cfrac%7BE_u%7D%7B2%20E%7D%20(u')%5E2%20%2B%20%5Cfrac%7BE_v%7D%7BE%7D%20u'%20v'%20-%20%5Cfrac%7BG_u%7D%7B2%20E%7D%20(v')%5E2%0A%20%20%20%3D%200%20%5C%5C%0A%20v''%20-%20%5Cfrac%7BE_v%7D%7B2%20G%7D%20(u')%5E2%20%2B%20%5Cfrac%7BG_u%7D%7BG%7D%20u'%20v'%20%2B%20%5Cfrac%7BG_v%7D%7B2%20G%7D%20(v')%5E2%0A%20%20%20%3D%200%20

5.Null geodesics

Back to the beginning, consider the null geodesics, in which massless particles are travelling along,like photon. Suppose a path along the?x-axis?,then the metric is:

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?-dt%5E2%2Ba%5E2(t)dx%5E2%3D0?

With?parametrization %5Clambda? , we have:

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? ? ?%5Cfrac%7Bdx%7D%7Bd%5Clambda%7D%3D%5Cfrac%7B1%7D%7Ba%7D%5Cfrac%7Bdt%7D%7Bd%20%5Clambda%7D?

donate???%5Cdot%20a%3D%5Cfrac%7Bda%7D%7Bdt%7D? ,the null geodesics is :

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?%5Cfrac%7Bd%5E2%20t%7D%7Bd%20%5Clambda%5E2%7D%20%2B%0A%20%20%5Cfrac%7B%5Cdot%20a%7D%7Ba%7D%20(%5Cfrac%7Bd%20t%7D%7Bd%20%5Clambda%7D)%5E2%0A%20%20%20%20%3D0

With parametrization of propertime?%5Ctau?, we have:

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?%5Cfrac%7Bd%5E2%20t%7D%7Bd%20%5Ctau%5E2%7D%20%2B%0A%20%5Cdot%20a%20a%20%5Cdelta_%7Bj%7D%5Ei%20%5Cfrac%7Bd%20x%5Ei%7D%7Bd%20%5Ctau%7D%20%5Cfrac%7Bd%20%20x%5Ej%7D%7Bd%20%5Ctau%7D%0A%20%20%20%20%3D0

where?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ??%5Ctau%3D%5Cint%20%5Cleft(-g_%7B%5Cmu%20v%7D%20%5Cfrac%7Bdx%5E%5Cmu%7D%7Bd%20%5Clambda%7D%20%5Cfrac%7Bdx%5Ev%7D%7Bd%20%5Clambda%7D%5Cright)%5E%5Cfrac%7B1%7D%7B2%7D%20d%20%5Clambda




















Differential Geometry Notes- Geodesics的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
呼图壁县| 沿河| 余庆县| 柘荣县| 吉安市| 密山市| 桐城市| 河北省| 莱西市| 芒康县| 松潘县| 台北市| 枣阳市| 娱乐| 宾阳县| 乌兰浩特市| 龙陵县| 长治县| 琼海市| 晋州市| 历史| 汤原县| 白城市| 周宁县| 福州市| 齐河县| 张家港市| 宜君县| 米泉市| 鹿泉市| 出国| SHOW| 兰西县| 文登市| 东源县| 宝兴县| 军事| 平凉市| 盘山县| 临江市| 饶平县|