国产精品天干天干,亚洲毛片在线,日韩gay小鲜肉啪啪18禁,女同Gay自慰喷水

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

視頻 BV1wU4y1Y7UG 提到的定理 證明

2021-07-18 12:01 作者:Mynasty  | 我要投稿

BV1wU4y1Y7UG


cos2θ1sin2θ2

=(1-sin2θ1)sin2θ2

=cos2θ1(1-cos2θ2)

sin2θ2-sin2θ1sin2θ2

=cos2θ1-cos2θ1cos2θ2

sin2θ1+sin2θ2-sin2θ1sin2θ2

=sin2θ1+cos2θ1-cos2θ1cos2θ2

sin2θ1+sin2θ2-sin2θ1sin2θ2

=1-cos2θ1cos2θ2

(sin2θ1+sin2θ2-sin2θ1sin2θ2)

/(sin2θ1sin2θ2)

=(1-cos2θ1cos2θ2)

/(sin2θ1sin2θ2)

(sin2θ1+sin2θ2)/(sin2θ1sin2θ2)-1

=1/(sin2θ1sin2θ2)-1/(tan2θ1tan2θ2)

(sin2θ1+sin2θ2)/(sin2θ1sin2θ2)-1

-2/(tanθ1tanθ2)cosα-cos2θ)

=1/(sin2θ1sin2θ2)-1/(tan2θ1tan2θ2)

-2/(tanθ1tanθ2)cosα-cos2θ)

(sin2θ1+sin2θ2)/(sin2θ1sin2θ2)-1

-2/(tanθ1tanθ2)cosα-cos2θ

=1/(sin2θ1sin2θ2)

-(1/(tanθ1tanθ2)+cosα)2

(sin2θ1+sin2θ2)/(sin2θ1sin2θ2)-1

-2cosθ1cosθ2/(sinθ1sinθ2)cosα-cos2θ

=1/(sin2θ1sin2θ2)

-(1/(tanθ1tanθ2)+cosα)2

(sin2θ1+sin2θ2)/(sin2θ1sin2θ2)-1

-2√(cos2θ1cos2θ2/(sin2θ1sin2θ2))cosα-cos2θ

=1/(sin2θ1sin2θ2)

-(1/(tanθ1tanθ2)+cosα)2

(sin2θ1+sin2θ2)/(sin2θ1sin2θ2)-1

-2√((1-sin2θ1)(1-sin2θ2)/(sin2θ1sin2θ2))cosα-cos2θ

=1/(sin2θ1sin2θ2)

-(1/(tanθ1tanθ2)+cosα)2

1/sin2θ1+1/sin2θ2-2

-2√((1/sin2θ1-1)(1/sin2θ2-1))cosα+sin2α

=1/(sin2θ1sin2θ2)

-(1/(tanθ1tanθ2)+cosα)2

a2/sin2α

(1/sin2θ1+1/sin2θ2-2

-2√((1/sin2θ1-1)(1/sin2θ2-1))cosα+sin2α)

=a2/sin2α

(1/(sin2θ1sin2θ2)

-(1/(tanθ1tanθ2)+cosα)2)

(a2/sin2θ1+a2/sin2θ2-2a2

-2√((a2/sin2θ1-a2)(a2/sin2θ2-a2))cosα)/sin2α+a2

=a2/sin2α

(1/(sin2θ1sin2θ2)

-(1/(tanθ1tanθ2)+cosα)2)

R2

=((2a/(2sinθ1))2-a2+(2a/(2sinθ2))2-a2

-2√(((2a/(2sinθ1))2-a2)(2a/(2sinθ2))2-a2))cosα)/sin2α+a2

=a2/sin2α

(1/(sin2θ1sin2θ2)

-(1/(tanθ1tanθ2)+cosα)2)

R

=a/sinα

√(1/(sinθ1sinθ2)2

-(1/(tanθ1tanθ2)+cosα)2)

得證


視頻 BV1wU4y1Y7UG 提到的定理 證明的評論 (共 條)

分享到微博請遵守國家法律
宜昌市| 泽普县| 卓尼县| 扶余县| 石嘴山市| 宣武区| 广丰县| 醴陵市| 通江县| 兴海县| 商丘市| 蕲春县| 镇原县| 罗甸县| 封开县| 内黄县| 福建省| 拜泉县| 普兰店市| 昌江| 平阳县| 商都县| 英吉沙县| 大丰市| 门源| 公安县| 杂多县| 化州市| 大安市| 娄底市| 平定县| 临沧市| 嵊州市| 文登市| 长乐市| 汕头市| 阿拉善左旗| 新丰县| 马关县| 大姚县| 平乡县|