国产精品天干天干,亚洲毛片在线,日韩gay小鲜肉啪啪18禁,女同Gay自慰喷水

歡迎光臨散文網 會員登陸 & 注冊

一種全新的原創(chuàng)勾股定理證法(待考證)

2023-08-25 12:00 作者:小平千歌-Kasumi  | 我要投稿

命題:在Rt△ABC中,若∠B=90°,則AB^2+BC^2=AC^2

思路:考慮通過角平分線的性質來構造子母相似。這么構造有兩個好處:1.AD,?AE我們可以用包含AB, AC,?CB的式子來表示,DE我們則可以用與AB共同構成AD式子的BD表示;2.這些式子通過相似可以產生聯(lián)系。

容易得到AC^2-AB^2=AC*CB-DE*AB,則我們只需證明右式等于BC^2即可證明原命題。通過推導可以得出右式等于BC^2的前提是△ABC~△AED,而這是顯然的

證明:做∠C的平分線CD,交ABD。過DAC垂線DE,交ACE

由于∠B=DEC=90°

則△ABC~△AED

故AD/AC=AE/AB

由于CD平分∠C

則BD=DE,CB=CE

故AD/AC=AE/AB

(AB-DB)/AC=(AC-CE)/AB

AC^2-AB^2=AC*CE-DB*AB=AC*CB-DE*AB

又由△ABC~△AED得DE/BC=AE/AB

則AE*BC=DE*AB

BC(AC-CE)=DE*AB

BC(AC-BC)=DE*AB

BC^2=AC*CB-DE*AB

故AB^2+BC^2=AC^2



一種全新的原創(chuàng)勾股定理證法(待考證)的評論 (共 條)

分享到微博請遵守國家法律
南康市| 台安县| 安阳市| 抚顺县| 乌拉特中旗| 日照市| 滕州市| 江津市| 乐陵市| 安吉县| 长垣县| 嘉兴市| 青铜峡市| 汶川县| 惠州市| 冷水江市| 洛阳市| 连云港市| 青州市| 龙川县| 左贡县| 汤阴县| 凯里市| 广德县| 新沂市| 延吉市| 莱西市| 铜鼓县| 嘉定区| 启东市| 娄烦县| 商城县| 安国市| 光山县| 和硕县| 肇东市| 高阳县| 上高县| 垦利县| 青田县| 都兰县|