肝臟衰老的標(biāo)志,成都研究團(tuán)隊(duì)揭示肝纖維化的發(fā)生和干細(xì)胞治療
肝臟纖維是化肝細(xì)胞被反復(fù)破環(huán)、再生后的結(jié)果,可以理解為肝臟炎癥后的瘢痕。肝纖維化的進(jìn)一步發(fā)展可能引起一種常見的肝病——肝硬化。
在中國(guó)六十余個(gè)課題組聯(lián)合發(fā)布的“衰老標(biāo)志物”綜述中,肝纖維化增加被列入肝臟衰老的生物標(biāo)志物之一[1]。并且,研究也的確發(fā)現(xiàn),老年人肝纖維化的水平越高,他們出現(xiàn)健康問題的風(fēng)險(xiǎn)也會(huì)隨之升高[2]。
圖注:肝臟衰老的生物標(biāo)志物[1]
研究表明,衰老會(huì)增加患肝纖維化的風(fēng)險(xiǎn)[3],其原因之一是體內(nèi)的纖維產(chǎn)生和分解平衡被打破,纖維的產(chǎn)生增多,分解減少[4]。這個(gè)纖維物質(zhì)就是活化肝星狀細(xì)胞(HSC)產(chǎn)生的細(xì)胞外基質(zhì)(ECM)。
簡(jiǎn)而言之,我們可以將肝纖維化看成是肝臟的傷疤,傷疤沒有愈合又添新的傷疤,如此持續(xù)下去,肝臟會(huì)因?yàn)閭踢^多而發(fā)生結(jié)構(gòu)和功能的改變,也就是肝纖維化的嚴(yán)重后果肝硬化和肝功能受損。
那么是什么導(dǎo)致肝臟中纖維物質(zhì)的過度沉積,引發(fā)肝纖維化?又要怎樣緩解肝纖維化呢?我國(guó)成都中醫(yī)藥大學(xué)研究團(tuán)隊(duì)在國(guó)際免疫藥理學(xué)雜志上發(fā)表的一篇綜述文章給了參考[5]。
一、細(xì)胞衰老和自噬——肝纖維化中的兩把雙刃劍
我們一般認(rèn)為細(xì)胞衰老和自噬不足不利于機(jī)體健康,甚至加速衰老,但是在肝纖維化過程中似乎不能這樣簡(jiǎn)單地下結(jié)論。
1. 細(xì)胞衰老
肝纖維化的關(guān)鍵是肝星狀細(xì)胞(HSC)的活化[6]。HSC被激活后會(huì)產(chǎn)生細(xì)胞外基質(zhì)(ECM),這就是肝纖維化中的纖維物質(zhì)。ECM的過度沉積就是肝臟纖維化的主要表現(xiàn)。導(dǎo)致HSC活化的主要原因有兩個(gè),一個(gè)是肝損傷,另一個(gè)就是肝細(xì)胞衰老。
l 衰老細(xì)胞對(duì)肝纖維化的負(fù)面影響
除了肝損傷之外,衰老細(xì)胞肝也會(huì)誘導(dǎo)HSC激活。肝細(xì)胞衰老有兩個(gè)來源,一是肝細(xì)胞自身因氧化應(yīng)激、DNA損傷等因素衰老,二是衰老的膽管細(xì)胞可以募集肌成纖維細(xì)胞和巨噬細(xì)胞誘導(dǎo)肝細(xì)胞衰老。衰老的肝細(xì)胞會(huì)激活HSC,最終導(dǎo)致肝纖維化。
l 衰老細(xì)胞對(duì)肝纖維化的正面影響
當(dāng)活化的HSC衰老,它所造成的肝纖維化也會(huì)減輕。具體表現(xiàn)是衰老的HSC會(huì)抑制ECM成分的產(chǎn)生,并且刺激ECM降解酶的分泌。而且衰老的HSC會(huì)增強(qiáng)免疫監(jiān)視,促進(jìn)免疫系統(tǒng)對(duì)其的清除,使得肝纖維化得到緩解[7]。
圖注:細(xì)胞衰老在肝纖維化中的作用。肝損傷會(huì)誘導(dǎo)靜止?fàn)顟B(tài)的HSC激活,同時(shí)導(dǎo)致肝細(xì)胞衰老?;罨腍SC增殖并產(chǎn)生ECM,大量ECM沉積后造成肝纖維化。衰老的膽管細(xì)胞會(huì)加速肝細(xì)胞的衰老,衰老的肝細(xì)胞也會(huì)誘導(dǎo)HSC的激活。
2. 自噬
自噬可以降解、回收蛋白質(zhì)和受損的細(xì)胞器,以維持細(xì)胞的穩(wěn)態(tài)。在多個(gè)物種中發(fā)現(xiàn)自噬的活性會(huì)隨著年齡的增長(zhǎng)而降低[8-11],自噬激活可以延長(zhǎng)動(dòng)物的壽命[12],自噬抑制會(huì)導(dǎo)致衰老[13]。
在肝臟中,不同類型的細(xì)胞其自噬對(duì)肝纖維化也有不同的影響。自噬抑制所表現(xiàn)的也不完全是負(fù)作用。
l 自噬對(duì)肝纖維化的負(fù)面作用
研究發(fā)現(xiàn),在活化的肝星狀細(xì)胞中自噬功能增加,而且抑制自噬活性能顯著降低纖維化基因的表達(dá),進(jìn)而減弱纖維化活性。而且抑制自噬或自噬缺陷會(huì)損害肝星狀細(xì)胞的能量產(chǎn)生,進(jìn)而減弱肝星狀細(xì)胞的活化[14]。
l 自噬對(duì)肝纖維化的正面作用
與肝星狀細(xì)胞相反,抑制自噬在巨噬細(xì)胞中會(huì)加重肝纖維化。巨噬細(xì)胞的自噬缺陷會(huì)增加炎癥細(xì)胞的聚集和肝臟炎癥,還會(huì)加重肝纖維化和肝損傷。改善巨噬細(xì)胞的自噬能力后,肝纖維化和肝損傷得到了緩解[15]。
圖注:自噬的主要步驟,起始和吞噬體形成、伸長(zhǎng)和閉合、溶酶體融合。
二、間充質(zhì)干細(xì)胞——治療肝纖維化的全能選手
間充質(zhì)干細(xì)胞(MSC)修復(fù)再生和抗炎的特性。在抗衰界,MSC治療對(duì)衰老相關(guān)的疾病,阿爾茲海默癥[16]、骨質(zhì)疏松[17]等有幫助,對(duì)緩解細(xì)胞衰老[18]和線粒體功能障礙[19]也有一定益處。
既然衰老會(huì)導(dǎo)致肝纖維化的風(fēng)險(xiǎn)增加,MSC能治療衰老,那么我們可以順理成章地推測(cè),MSC對(duì)治療肝纖維化也有作用,事實(shí)也確實(shí)如此。而且MSC不僅自身能能緩解肝纖維化,還能影響上文說到的肝星狀細(xì)胞和巨噬細(xì)胞,讓它們也向減少肝纖維化的方向發(fā)展。
圖注:間充質(zhì)干細(xì)胞在肝纖維化治療中的潛在機(jī)制。間充質(zhì)干細(xì)胞可抑制ECM的過度沉積,減弱炎癥和免疫反應(yīng),促進(jìn)肝纖維化過程中肝細(xì)胞再生。
MSC對(duì)肝纖維化的治療機(jī)制可以概括為以下幾個(gè)方面:
l 抑制細(xì)胞外基質(zhì)(ECM)的沉積
緩解纖維化最樸實(shí)的思路是避免新纖維化的產(chǎn)生和清除已產(chǎn)生的纖維化,這兩點(diǎn)MSC都能實(shí)現(xiàn)。
間充質(zhì)干細(xì)胞(MSC)分泌蛋白組能抑制幾種纖維化因子的表達(dá)[20]。還有研究表明,MSC衍生的外泌體可以抑制HSC的活化,減少活化HSC產(chǎn)生的ECM,進(jìn)而緩解肝纖維化[21]。
在清除已產(chǎn)生的纖維化方面,MSC通過上調(diào)抗纖維化因子(如MMP)和再生因子(如OSM和VEGF)來促進(jìn)肝纖維化消退[22]。
l 減少炎癥反應(yīng)
MSC的抗炎特性也可以治療肝纖維化。MSC外泌體能抑制促炎巨噬細(xì)胞,降低肝纖維化中的炎癥和肝損傷,促進(jìn)免疫抑制因子的表達(dá)[23-25]。肝臟炎癥少了,肝損傷就減少了,因肝損傷而激活的肝星狀細(xì)胞(HSC)和產(chǎn)生的ECM就少了,肝纖維化自然就得到了緩解。
l 間充質(zhì)干細(xì)胞(MSC)程序性死亡所引起的免疫反應(yīng)能減少肝纖維化
在自然界有一句話“一鯨落,萬物生”,說的是鯨魚死亡沉底后的尸體可以滋養(yǎng)大量海洋生物。MSC的程序性死亡(包括細(xì)胞凋亡、自噬、鐵死亡和焦亡)在肝纖維化中也有異曲同工之妙。
MSC的凋亡可誘導(dǎo)巨噬細(xì)胞產(chǎn)生免疫抑制,并且抑制促炎因子和促纖維化細(xì)胞因子的分泌[26];MSC焦亡期間miR-200b-3p表達(dá)的降低可能使得肝纖維化減少[27]。
l 促進(jìn)肝細(xì)胞再生
Notch信號(hào)通路會(huì)抑制肝臟再生,而間充質(zhì)干細(xì)胞(MSC)移植可使得Notch通路下調(diào),進(jìn)而促進(jìn)肝臟再生并抑制纖維化[28-29]。另外,MSC來源的細(xì)胞外囊泡(MSC-Evs)能使老化的干細(xì)胞恢復(fù)活力,并通過上調(diào)線粒體自噬增強(qiáng)肝細(xì)胞的增殖[30]。
另外,自噬也會(huì)影響MSC對(duì)肝纖維化的治療?;A(chǔ)水平的自噬能保持MSC的治療特性,而高水平自噬所產(chǎn)生的SASP和自噬不足都會(huì)加速M(fèi)SC的衰老。在衰老MSC中,基礎(chǔ)自噬水平會(huì)升高,能少部分抑制衰老,增強(qiáng)MSC自我更新和再生能力[5]。
圖注:自噬對(duì)間充質(zhì)干細(xì)胞衰老的影響。基礎(chǔ)水平自噬對(duì)MSC維持生物效應(yīng)功能至關(guān)重要,在衰老MSC中,基礎(chǔ)自噬增加以維持其自我更新和再生能力,損害、減少自噬和過度自噬都會(huì)導(dǎo)致MSC衰老。
看完這篇文章,小編的感受就是“醫(yī)學(xué)是一門平衡的藝術(shù)”,永遠(yuǎn)要具體問題具體分析。肝纖維化就像是兩只腳站在兩個(gè)天平上。一個(gè)天平名叫細(xì)胞衰老,另一個(gè)天平叫自噬。
活化肝星狀細(xì)胞的衰老會(huì)減輕纖維化程度,但是膽管細(xì)胞和肝細(xì)胞的衰老又會(huì)導(dǎo)致肝纖維化。
在另一個(gè)自噬的天平上,抑制肝星狀細(xì)胞自噬有利于緩解肝纖維化,但抑制巨噬細(xì)胞自噬會(huì)加重纖維化;基礎(chǔ)的自噬可以保護(hù)間充質(zhì)干細(xì)胞,緩解肝纖維化,但高水平的自噬會(huì)加速間充質(zhì)干細(xì)胞的衰老,不利于消除肝纖維化。
——TIMEPIE——
這里是只做最硬核續(xù)命學(xué)研究的時(shí)光派,專注“長(zhǎng)壽科技”科普。日以繼夜翻閱文獻(xiàn)撰稿只為給你帶來最新、最全前沿抗衰資訊,歡迎評(píng)論區(qū)留下你的觀點(diǎn)和疑惑;日更動(dòng)力源自你的關(guān)注與分享,抗衰路上與你并肩同行!
參考文獻(xiàn):
[1] Aging Biomarker Consortium, Bao H, Cao J, et al. Biomarkers of aging. Sci China Life Sci. 2023;66(5):893-1066. doi:10.1007/s11427-023-2305-0
[2] De Vincentis A, Costanzo L, Vespasiani-Gentilucci U, et al. Association between non-invasive liver fibrosis scores and occurrence of health adverse outcomes in older people. Dig Liver Dis. 2019;51(9):1330-1336. doi:10.1016/j.dld.2019.01.017
[3] Delire B, Lebrun V, Selvais C, et al. Aging enhances liver fibrotic response in mice through hampering extracellular matrix remodeling. Aging (Albany NY). 2016;9(1):98-113. doi:10.18632/aging.101124
[4] Delire B, Lebrun V, Selvais C, et al. Aging enhances liver fibrotic response in mice through hampering extracellular matrix remodeling. Aging (Albany NY). 2016;9(1):98-113. doi:10.18632/aging.101124
[5] Tao H, Liu Q, Zeng A, Song L. Unlocking the potential of Mesenchymal stem cells in liver Fibrosis: Insights into the impact of autophagy and aging [published online ahead of print, 2023 Jun 15]. Int Immunopharmacol. 2023;121:110497. doi:10.1016/j.intimp.2023.110497
[6] Udomsinprasert W, Sobhonslidsuk A, Jittikoon J, Honsawek S, Chaikledkaew U. Cellular senescence in liver fibrosis: Implications for age-related chronic liver diseases. Expert Opin Ther Targets. 2021;25(9):799-813. doi:10.1080/14728222.2021.1992385
[7] Krizhanovsky V, Yon M, Dickins RA, et al. Senescence of activated stellate cells limits liver fibrosis. Cell. 2008;134:657–667.
[8] Uddin MN, Nishio N, Ito S, Suzuki H, Isobe K. Autophagic activity in thymus and liver during aging. Age (Dordr). 2012;34(1):75-85. doi:10.1007/s11357-011-9221-9
[9] Chang JT, Kumsta C, Hellman AB, Adams LM, Hansen M. Spatiotemporal regulation of autophagy during Caenorhabditis elegans aging. Elife. 2017;6:e18459. Published 2017 Jul 4. doi:10.7554/eLife.18459
[10] Donati A, Cavallini G, Paradiso C, et al. Age-related changes in the autophagic proteolysis of rat isolated liver cells: effects of antiaging dietary restrictions. J Gerontol A Biol Sci Med Sci. 2001;56(9):B375-B383. doi:10.1093/gerona/56.9.b375
[11] Simonsen A, Cumming RC, Brech A, Isakson P, Schubert DR, Finley KD. Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy. 2008;4(2):176-184. doi:10.4161/auto.5269
[12] Meléndez A, Tallóczy Z, Seaman M, Eskelinen EL, Hall DH, Levine B. Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science. 2003;301(5638):1387-1391. doi:10.1126/science.1087782
[13] Yamamoto T, Takabatake Y, Kimura T, et al. Time-dependent dysregulation of autophagy: Implications in aging and mitochondrial homeostasis in the kidney proximal tubule. Autophagy. 2016;12(5):801-813. doi:10.1080/15548627.2016.1159376
[14] Hernández-Gea V, Ghiassi-Nejad Z, Rozenfeld R, et al. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology. 2012;142(4):938-946. doi:10.1053/j.gastro.2011.12.044
[15] Lodder J, Dena?s T, Chobert MN, et al. Macrophage autophagy protects against liver fibrosis in mice. Autophagy. 2015;11(8):1280-1292. doi:10.1080/15548627.2015.1058473
[16] Guo M, Yin Z, Chen F, Lei P. Mesenchymal stem cell-derived exosome: a promising alternative in the therapy of Alzheimer's disease. Alzheimers Res Ther. 2020;12(1):109. Published 2020 Sep 14. doi:10.1186/s13195-020-00670-x
[17] Jiang Y, Zhang P, Zhang X, Lv L, Zhou Y. Advances in mesenchymal stem cell transplantation for the treatment of osteoporosis. Cell Prolif. 2021;54(1):e12956. doi:10.1111/cpr.12956
[18] Liu SJ, Meng MY, Han S, et al. Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Ameliorate HaCaT Cell Photo-Aging. Rejuvenation Res. 2021;24(4):283-293. doi:10.1089/rej.2020.2313
[19] Zhao M, Liu S, Wang C, et al. Mesenchymal Stem Cell-Derived Extracellular Vesicles Attenuate Mitochondrial Damage and Inflammation by Stabilizing Mitochondrial DNA [published correction appears in ACS Nano. 2021 Dec 28;15(12):20692]. ACS Nano. 2021;15(1):1519-1538. doi:10.1021/acsnano.0c08947
[20] An SY, Jang YJ, Lim HJ, et al. Milk Fat Globule-EGF Factor 8, Secreted by Mesenchymal Stem Cells, Protects Against Liver Fibrosis in Mice. Gastroenterology. 2017;152(5):1174-1186. doi:10.1053/j.gastro.2016.12.003
[21] Tan Y, Huang Y, Mei R, et al. HucMSC-derived exosomes delivered BECN1 induces ferroptosis of hepatic stellate cells via regulating the xCT/GPX4 axis. Cell Death Dis. 2022;13(4):319. Published 2022 Apr 8. doi:10.1038/s41419-022-04764-2
[22] Watanabe Y, Tsuchiya A, Seino S, et al. Mesenchymal Stem Cells and Induced Bone Marrow-Derived Macrophages Synergistically Improve Liver Fibrosis in Mice. Stem Cells Transl Med. 2019;8(3):271-284. doi:10.1002/sctm.18-0105
[23] Tian S, Zhou X, Zhang M, et al. Mesenchymal stem cell-derived exosomes protect against liver fibrosis via delivering miR-148a to target KLF6/STAT3 pathway in macrophages. Stem Cell Res Ther. 2022;13(1):330. Published 2022 Jul 20. doi:10.1186/s13287-022-03010-y
[24] Boumaza I, Srinivasan S, Witt WT, et al. Autologous bone marrow-derived rat mesenchymal stem cells promote PDX-1 and insulin expression in the islets, alter T cell cytokine pattern and preserve regulatory T cells in the periphery and induce sustained normoglycemia. J Autoimmun. 2009;32(1):33-42. doi:10.1016/j.jaut.2008.10.004
[25] Fallowfield JA, Mizuno M, Kendall TJ, et al. Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J Immunol. 2007;178(8):5288-5295. doi:10.4049/jimmunol.178.8.5288
[26] Harrell CR, Jovicic N, Djonov V, Arsenijevic N, Volarevic V. Mesenchymal Stem Cell-Derived Exosomes and Other Extracellular Vesicles as New Remedies in the Therapy of Inflammatory Diseases. Cells. 2019;8(12):1605. Published 2019 Dec 11. doi:10.3390/cells8121605
[27] Zhang L, Li S, Li J, Li Y. LncRNA ORLNC1 Promotes Bone Marrow Mesenchyml Stem Cell Pyroptosis Induced by Advanced Glycation End Production by Targeting miR-200b-3p/Foxo3 Pathway. Stem Cell Rev Rep. 2021;17(6):2262-2275. doi:10.1007/s12015-021-10247-2
[28] Chen Y, Zheng S, Qi D, et al. Inhibition of Notch signaling by a γ-secretase inhibitor attenuates hepatic fibrosis in rats. PLoS One. 2012;7(10):e46512. doi:10.1371/journal.pone.0046512
[29] Russell JO, Ko S, Monga SP, Shin D. Notch Inhibition Promotes Differentiation of Liver Progenitor Cells into Hepatocytes via sox9b Repression in Zebrafish. Stem Cells Int. 2019;2019:8451282. Published 2019 Mar 12. doi:10.1155/2019/8451282
[30] Zhang J, Lu T, Xiao J, et al. MSC-derived extracellular vesicles as nanotherapeutics for promoting aged liver regeneration. J Control Release. 2023;356:402-415. doi:10.1016/j.jconrel.2023.02.032