国产精品天干天干,亚洲毛片在线,日韩gay小鲜肉啪啪18禁,女同Gay自慰喷水

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

[Number Theory] Pythagorean Triples

2021-11-19 09:48 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng(鄭濤)

【Problem】

A Pythagorean triple is a set of three positive integers (a%2Cb%2Cc) that satisfies the Pythagorean theorem a%5E2%20%2B%20b%5E2%20%3D%20c%5E2. The earliest table of Pythagorean triples can be found on an ancient Babylonian clay tablet called ''Plimpton 322'' (c. 1800 BC). However, the clay tablet does not indicate any knowledge of the Pythagoean triples formula.

Plimpton 322

Derive the formula for generating primitive Pythagorean triples

(a%2Cb%2Cc)%20%3D%20(2mn%2C%20m%5E2-n%5E2%2C%20m%5E2%2Bn%5E2)

where %5Cgcd(m%2C%20n)%3D1 and %5Cgcd(a%2Cb%2Cc)%3D1.

【Solution】

The Pythagorean theorem states that for a right triangle with sides a%2Cb%2Cc%20, where c is the longest side, a%5E2%20%2B%20b%5E2%20%3D%20c%5E2.

Subtract b%5E2 on both sides and factorize:

a%5E2%20%3D%20c%5E2%20-%20b%5E2

a%5E2%20%3D%20(c%2Bb)(c-b)

Then divide a%5E2 on both sides:

1%20%3D%20%5Cleft(%5Cfrac%7Bc%2Bb%7D%7Ba%7D%5Cright)%5Cleft(%5Cfrac%7Bc-b%7D%7Ba%7D%5Cright)


If %5Cfrac%7Bc-b%7D%7Ba%7D%20 is a rational number, then %20%5Cfrac%7Bc-b%7D%7Ba%7D%20%3D%20%5Cfrac%7Bn%7D%7Bm%7D and %5Cfrac%7Bc%2Bb%7D%7Ba%7D%20%3D%20%5Cfrac%7Bm%7D%7Bn%7D, where %5Cgcd(m%2Cn)%20%3D%201.

Subsequently, %5Cfrac%7Bc%7D%7Ba%7D%20-%20%5Cfrac%7Bb%7D%7Ba%7D%20%3D%20%5Cfrac%7Bn%7D%7Bm%7D and %5Cfrac%7Bc%7D%7Ba%7D%20%2B%20%5Cfrac%7Bb%7D%7Ba%7D%20%3D%20%5Cfrac%7Bm%7D%7Bn%7D.

(1) By adding the two expressions, it can be shown that

2%5Cleft(%5Cfrac%7Bc%7D%7Ba%7D%5Cright)%20%20%3D%20%5Cfrac%7Bm%5E2%20%2B%20n%5E2%7D%7Bmn%7D

%5Cfrac%7Bc%7D%7Ba%7D%20%20%3D%20%5Cfrac%7Bm%5E2%20%2B%20n%5E2%7D%7B2mn%7D

For primitive Pythagorean triples, %5Cgcd(a%2Cc)%20%3D%201; therefore, %20a%20%3D%202mn and c%20%3D%20m%5E2%20%2B%20n%5E2%20.

(2) By subtracting the two expressions, it can be shown that

2%5Cleft(%5Cfrac%7Bb%7D%7Ba%7D%5Cright)%20%20%3D%20%5Cfrac%7Bm%5E2%20-%20n%5E2%7D%7Bmn%7D

%5Cfrac%7Bb%7D%7Ba%7D%20%20%3D%20%5Cfrac%7Bm%5E2%20-%20n%5E2%7D%7B2mn%7D

For primitive Pythagorean triples, %20%5Cgcd(a%2Cb)%20%3D%201; therefore, a%20%3D%202mn and b%20%3D%20m%5E2%20-%20n%5E2.

Therefore, the primitive Pythagorean triples formula is

(a%2Cb%2Cc)%20%3D%20(2mn%2C%20m%5E2-n%5E2%2C%20m%5E2%2Bn%5E2)%20


To generate all Pythagorean triples, one can scale each side by a common factor k that is a positive integer.

(a%2Cb%2Cc)%20%3D%20%5Cleft(2kmn%2C%20k(m%5E2-n%5E2)%2C%20k(m%5E2%2Bn%5E2)%5Cright)



[Number Theory] Pythagorean Triples的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
平谷区| 蚌埠市| 民丰县| 古蔺县| 乡城县| 米脂县| 乐至县| 钦州市| 莲花县| 宁安市| 隆尧县| 称多县| 呈贡县| 阳谷县| 周口市| 平乡县| 开封市| 依兰县| 彰化市| 罗平县| 长岛县| 怀柔区| 绍兴市| 陕西省| 遂川县| 麻阳| 弥勒县| 九江县| 太谷县| 麻栗坡县| 安丘市| 西贡区| 淮滨县| 汽车| 兖州市| 大化| 上杭县| 罗江县| 城口县| 桃园县| 彰武县|