国产精品天干天干,亚洲毛片在线,日韩gay小鲜肉啪啪18禁,女同Gay自慰喷水

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

[Geometry] Archimedes' Triumph

2021-11-27 09:19 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng(鄭濤)

【Problem】

In Volume I of On the ''Sphere and the Cylinder'', Archimedes (c. 287 - 212 BC) determined the volumetric ratio of a sphere to a circumscribed cylinder. The height and width of the cylinder is equal to the diameter of the sphere. What is this ratio?

Archimedes' Sphere in the Cylinder

【Solution】

Let the radius of the sphere be r. The circumscribed cylinder shares the same height and width as the sphere, so?the height of the cylinder is h%20%3D%202r.

The volume of a sphere is %20V_%7Bsphere%7D%20%3D%20%5Cfrac%7B4%5Cpi%20r%5E3%7D%7B3%7D%20, and the volume of a cylinder is V_%7Bcylinder%7D%20%3D%20%5Cpi%20r%5E2%20h. Thus, the volume circumscribed cylinder is

%20V_%7Bcylinder%7D%20%3D%20%5Cpi%20r%5E2%20%5Ctimes%202r

V_%7Bcylinder%7D%20%3D%202%5Cpi%20r%5E3

Therefore, the volumetric ratio of a sphere to its circumscribed cylinder is

V_%7Bsphere%7D%3AV_%7Bcylinder%7D%20%3D%20%5Cfrac%7B4%5Cpi%20r%5E3%7D%7B3%7D%3A2%5Cpi%20r%5E3

which simplifies to

V_%7Bsphere%7D%3AV_%7Bcylinder%7D%20%3D%202%3A3

Archimedes


[Geometry] Archimedes' Triumph的評論 (共 條)

分享到微博請遵守國家法律
仪征市| 商南县| 金塔县| 合作市| 鸡西市| 东台市| 涞源县| 台东市| 思南县| 汝阳县| 甘南县| 东光县| 盘山县| 富蕴县| 望城县| 新巴尔虎右旗| 湘阴县| 黑龙江省| 天气| 靖西县| 巨野县| 天祝| 河南省| 宜州市| 凉城县| 双流县| 西乌珠穆沁旗| 平阴县| 西吉县| 淳安县| 城固县| 集贤县| 扬州市| 磴口县| 克什克腾旗| 弥勒县| 读书| 绥化市| 邹平县| 梁平县| 乃东县|